Mathematical modeling of heterogeneous detonation in gas suspensions of aluminum and coal-dust particles

2009 ◽  
Vol 45 (4) ◽  
pp. 495-505 ◽  
Author(s):  
A. V. Fedorov ◽  
V. M. Fomin ◽  
T. A. Khmel’
Author(s):  
Meisam Soleimani ◽  
Axel Haverich ◽  
Peter Wriggers

AbstractThis paper deals with the mathematical modeling of atherosclerosis based on a novel hypothesis proposed by a surgeon, Prof. Dr. Axel Haverich (Circulation 135(3):205–207, 2017). Atherosclerosis is referred as the thickening of the artery walls. Currently, there are two schools of thoughts for explaining the root of such phenomenon: thickening due to substance deposition and thickening as a result of inflammatory overgrowth. The hypothesis favored here is the second paradigm stating that the atherosclerosis is nothing else than the inflammatory response of of the wall tissues as a result of disruption in wall nourishment. It is known that a network of capillaries called vasa vasorum (VV) accounts for the nourishment of the wall in addition to the natural diffusion of nutrient from the blood passing through the lumen. Disruption of nutrient flow to the wall tissues may take place due to the occlusion of vasa vasorums with viruses, bacteria and very fine dust particles such as air pollutants referred to as PM 2.5. They can enter the body through the respiratory system at the first place and then reach the circulatory system. Hence in the new hypothesis, the root of atherosclerotic vessel is perceived as the malfunction of microvessels that nourish the vessel. A large number of clinical observation support this hypothesis. Recently and highly related to this work, and after the COVID-19 pandemic, one of the most prevalent disease in the lungs are attributed to the atherosclerotic pulmonary arteries, see Boyle and Haverich (Eur J Cardio Thorac Surg 58(6):1109–1110, 2020). In this work, a general framework is developed based on a multiphysics mathematical model to capture the wall deformation, nutrient availability and the inflammatory response. For the mechanical response an anisotropic constitutive relation is invoked in order to account for the presence of collagen fibers in the artery wall. A diffusion–reaction equation governs the transport of the nutrient within the wall. The inflammation (overgrowth) is described using a phase-field type equation with a double well potential which captures a sharp interface between two regions of the tissues, namely the healthy and the overgrowing part. The kinematics of the growth is treated by classical multiplicative decomposition of the gradient deformation. The inflammation is represented by means of a phase-field variable. A novel driving mechanism for the phase field is proposed for modeling the progression of the pathology. The model is 3D and fully based on the continuum description of the problem. The numerical implementation is carried out using FEM. Predictions of the model are compared with the clinical observations. The versatility and applicability of the model and the numerical tool allow.


1991 ◽  
Vol 27 (2) ◽  
pp. 223-231 ◽  
Author(s):  
V. M. Boiko ◽  
A. N. Papyrin ◽  
S. V. Poplavskii

2021 ◽  
Vol 132 ◽  
pp. 103506
Author(s):  
Zheng Wang ◽  
Xu Zheng ◽  
Dongyan Li ◽  
Helin Zhang ◽  
Yi Yang ◽  
...  
Keyword(s):  

Author(s):  
K.M. Moiseeva ◽  
◽  
A.Yu. Krainov ◽  
E.I. Rozhkova ◽  
◽  
...  

Swirling combustion is currently one of the most important engineering problems in physics of combustion. There is a hypothesis on the increase in the combustion efficiency of reacting gas mixtures in combustion chambers with swirling flows, as well as on the increase in the efficiency of fuel combustion devices. In this paper, it is proposed to simulate a swirling flow by taking into account the angular component of the flow velocity. The aim of the study is to determine the effect of the angular component of the flow velocity on the characteristics of the flow and combustion of an air suspension of coal dust in a pipe. The problem is solved in a twodimensional axisymmetric approximation with allowance for a swirling flow. A physical and mathematical model is based on the approaches of the mechanics of multiphase reacting media. A solution method involves the arbitrary discontinuity decay algorithm. The impact of the flow swirl and the size of coal dust particles on the gas temperature distribution along the pipe is determined.


2004 ◽  
Vol 31 (2) ◽  
pp. 171-183 ◽  
Author(s):  
Mohamed M. Ghanem ◽  
Dale Porter ◽  
Lori A. Battelli ◽  
Val Vallyathan ◽  
Michael L. Kashon ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 165 ◽  
Author(s):  
Hu Jin ◽  
Wen Nie ◽  
Yansong Zhang ◽  
Hongkun Wang ◽  
Haihan Zhang ◽  
...  

Aiming to further improve the dust suppression performance of the dust suppressant, the present study independently develops a new type of biodegradable environmentally-friendly dust suppressant. Specifically, the naturally occurring biodegradable soybean protein isolate (SPI) is selected as the main material, which is subject to an anionic surfactant, i.e., sodium dodecyl sulfonate (SDS) for modification with the presence of additives including carboxymethylcellulose sodium and methanesiliconic acid sodium. As a result, the SDS-SPI cementing dust suppressant is produced. The present study experimentally tests solutions with eight different dust suppressant concentrations under the same experimental condition, so as to evaluate their dust suppression performances. Key metrics considered include water retention capability, cementing power and dust suppression efficiency. The optimal concentration of dust suppressant solution is determined by collectively comparing these metrics. The experiments indicate that the optimal dust suppressant concentration is 3%, at which level the newly developed environmentally-friendly dust suppressant solution exhibits a decent dust suppression characteristic, with the water retention power reaching its peak level, and the corresponding viscosity being 12.96 mPa·s. This performance can generally meet the requirements imposed by coal mines. The peak efficiency of dust suppression can reach 92.13%. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to analyze the dust suppression mechanism of the developed dust suppressant. It was observed that a dense hardened shell formed on the surface of the pulverized coal particles sprayed with the dust suppressant. There is strong cementation between coal dust particles, and the cementation effect is better. This can effectively inhibit the re-entrainment of coal dust and reduce environmental pollution.


1989 ◽  
Vol 8 (2) ◽  
pp. 345-375 ◽  
Author(s):  
T. R. Lewis ◽  
F. H.Y. Green ◽  
W. J. Moorman ◽  
J. R. Burg ◽  
D. W. Lynch

To evaluate the potential health hazards of diesel engine emissions in underground coal mines, inhalation studies were performed using three species of animals. A wide range of toxicological responses was measured. Exhaust was provided by a 425 in.3 displacement four-cycle, water-cooled, naturally aspirated diesel engine (Caterpillar Model 3304) equipped with a water scrubber. Exposures were 7 h/day, 5 days/week, for periods up to 24 months. Micronized coal dust was generated using a Wright dust feeder. Four exposures were evaluated: (1) filtered ambient air, (2) 2 mg/m3 diesel particulate, (3) 2 mg/m3 respirable coal dust, and (4) 1 mg/m3 each of 2 and 3. Gaseous and vapor concentrations were similar in both exposures employing diesel exhaust. Male cynomolgus monkeys, Fischer-344 male and female rats, and female CD-1 mice were the experimental subjects. Monkeys were sacrificed at 24 months, rats at 3, 6, 12, and 24 months, and mice at 1, 3, and 6 months. Gross morphology and histopathology demonstrated that both diesel and coal dust particles are deposited in the lungs and retained in alveolar tissue. Alveolar type II cell hyperplasia and pulmonary lipidosis occurred in rats, being most evident in rats exposed to diesel exhaust alone. There was, however, no evidence of emphysema or chronic bronchitis, and only minimal fibrosis was seen in association with the retained particulate. Both particulates affected the defense mechanisms of the lung. Exposure to coal dust activated responses associated with phagocytosis, whereas exposure to diesel exhaust depressed them. Severity of influenza challenge increased concomitantly with decreased interferon production in diesel-exposed mice. Exposure to diesel emissions did not result in genotoxic effects as measured by increases in sister chromatid exchange, chromosomal aberrations, micronucleus testing, and urine genotoxic assays. Pulmonary function studies in monkeys showed mild obstructive airway disease in coal dust, diesel exhaust, and the combined exposed animals. This effect was most pronounced in monkeys exposed to diesel exhaust. Evidence of restrictive lung disease was not seen in any group. Clearance of F3O4 particles appeared to be stimulated by exposure to diesel exhaust in the first 3 months, but long-term clearance of diesel particulate appeared to be inhibited. No evidence was found for increases in tumorogenicity (rats) or induction of xenobiotic metabolizing enzymes in the lung or liver (rats). Humoral and cellular immunities were not significantly affected by exposure (rats). No adverse seminal effects were observed in monkeys exposed for 2 years. There was no frank evidence of chronic toxicity as demonstrated by changes in mortality, body weight gains, organ-body weight ratios, or clinical parameters in rats or monkeys. Synergistic effects between diesel exhaust and coal dust were not demonstrated.


Sign in / Sign up

Export Citation Format

Share Document