scholarly journals Development of Environmental Friendly Dust Suppressant Based on the Modification of Soybean Protein Isolate

Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 165 ◽  
Author(s):  
Hu Jin ◽  
Wen Nie ◽  
Yansong Zhang ◽  
Hongkun Wang ◽  
Haihan Zhang ◽  
...  

Aiming to further improve the dust suppression performance of the dust suppressant, the present study independently develops a new type of biodegradable environmentally-friendly dust suppressant. Specifically, the naturally occurring biodegradable soybean protein isolate (SPI) is selected as the main material, which is subject to an anionic surfactant, i.e., sodium dodecyl sulfonate (SDS) for modification with the presence of additives including carboxymethylcellulose sodium and methanesiliconic acid sodium. As a result, the SDS-SPI cementing dust suppressant is produced. The present study experimentally tests solutions with eight different dust suppressant concentrations under the same experimental condition, so as to evaluate their dust suppression performances. Key metrics considered include water retention capability, cementing power and dust suppression efficiency. The optimal concentration of dust suppressant solution is determined by collectively comparing these metrics. The experiments indicate that the optimal dust suppressant concentration is 3%, at which level the newly developed environmentally-friendly dust suppressant solution exhibits a decent dust suppression characteristic, with the water retention power reaching its peak level, and the corresponding viscosity being 12.96 mPa·s. This performance can generally meet the requirements imposed by coal mines. The peak efficiency of dust suppression can reach 92.13%. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to analyze the dust suppression mechanism of the developed dust suppressant. It was observed that a dense hardened shell formed on the surface of the pulverized coal particles sprayed with the dust suppressant. There is strong cementation between coal dust particles, and the cementation effect is better. This can effectively inhibit the re-entrainment of coal dust and reduce environmental pollution.

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1094 ◽  
Author(s):  
Chang Liu ◽  
Hua Jin ◽  
Yue Yu ◽  
Jingying Sun ◽  
Huanyu Zheng ◽  
...  

In this experiment, the peanut protein isolate (PPI), soybean protein isolate (SPI), rice bran protein isolate (RBPI), and whey protein isolate (WPI) were modified by linking chlorogenic acid covalently and linking dextran by Maillard reaction to prepare protein-chlorogenic acid-dextran (PCD) conjugates. As for structures, conformational changes of conjugates were determined by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE), Fourier transform infrared (FT-IR), and fluorescence measurements. The molecular weights of PCD conjugates became larger, the structure became disorder, and the amino acid residues inside the protein were exposed to the polar environment when compared to protein-chlorogenic acid (PC) and native proteins (NPs). As for properties, the interfacial tension reduced and antioxidant activity of PCD conjugates enhanced in varying degrees. Based on this, PCD conjugates were used as emulsifiers in order to investigate the properties of nanoemulsions and compared with PC conjugates and NPs. The mean droplet diameters (MDD) results showed that the nanoemulsions that were stabilized by PCD conjugates had the smallest particle sizes and exhibited uniformly dispersed spherical shapes. The storage and oxidative stabilities of PCD conjugates were also significantly improved. In comparison, nanoemulsion that was stabilized by PPI-chlorogenic acid-dextran conjugate had the smallest particle size and optimal stability among four protein stabilized nanoemulsions.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 667
Author(s):  
Chenxiao Wang ◽  
Hao Yin ◽  
Yanyun Zhao ◽  
Yan Zheng ◽  
Xuebing Xu ◽  
...  

This work aimed to improve the functional properties of soybean protein isolate (SPI) by high hydrostatic pressure (HHP) and develop SPI incorporated yogurt. Response surface methodology (RSM) was used to optimize the HHP treatment parameters, including pressure, holding time, and the ratio of SPI/water. Water holding capacity, emulsifying activity index, solubility, and hardness of SPI gels were evaluated as response variables. The optimized HPP treatment conditions were 281 MPa of pressure, 18.92 min of holding time, and 1:8.33 of SPI/water ratio. Water and oil holding capacity, emulsifying activity, and stability of SPI at different pH were improved. Additionally, relative lipoxygenase (LOX) activity of HHP treated SPI (HHP-SPI) was decreased 67.55 ± 5.73%, but sulphydryl group content of HHP-SPI was increased 12.77%, respectively. When incorporating 8% of SPI and HHP-SPI into yogurt, the water holding capacity and rheological properties of yogurt were improved in comparison with yogurt made of milk powders. Moreover, HHP-SPI incorporated yogurt appeared better color and flavor.


2013 ◽  
Vol 469 ◽  
pp. 171-174 ◽  
Author(s):  
Ning Zhang ◽  
Si Yao Sui ◽  
Zhe Wang ◽  
Zhong Su Ma

Edible films were prepared using soy protein isolate (4g/100g), oleic acid (0-2g/100g) and stearic acid (0-2g/100g). Effects of the type and ratio of fatty acids (oleic acid and stearic acid) on the thermal properties of soybean protein isolate-based films were investigated. The results indicated that the addition of oleic acid and stearic acid take a significant effect on the thermal stability of soybean protein isolate-based films, as may attribute to that oleic acid is an amphiphilic substance that interacts with both polar and hydrophobic sites on proteins, thus it could improve the functional properties of the films. Besides, the solid state and hydrophobic nature of stearic acid could help limit water diffusion in the matrix more efficiently when it is well-integrated in the matrix through the surfactant action of oleic acid.


Sign in / Sign up

Export Citation Format

Share Document