scholarly journals Gendered impacts of greenhouse gas mitigation options for rice cultivation in India

2020 ◽  
Vol 163 (2) ◽  
pp. 1045-1063
Author(s):  
Hom Gartaula ◽  
Tek B Sapkota ◽  
Arun Khatri-Chhetri ◽  
Gokul Prasad ◽  
Lone Badstue

AbstractThe nexus of gender-agriculture-emissions reduction is one of the least explored areas related to agriculture and climate change. This nexus plays an important role in the areas where women’s participation in agriculture is high, and the contribution of the agricultural sector to total emission is significant. This study generates evidence on women’s labor contribution in rice cultivation and potential reduction of their labor drudgery, including GHG mitigation co-benefits with the adoption of direct seeding and machine transplanting technologies. Using a large number of plot-level data (11,987 data points) from the rice-growing regions of India, the study shows that changing rice production technology from conventional to direct-seeded rice (DSR) and/or machine-transplanted rice (MTR) offers huge potential to reduce women’s labor in rice planting (745 million labor-days for DSR and 610 million labor-days for MTR) and greenhouse gases (GHG) emission (34 MtCO2e for DSR and 7 MtCO2e for MTR) at the same time. This potential differs from the agro-ecological region, the level of input use, and women’s involvement in rice cultivation. The realization of this gender-responsive GHG mitigation strategy depends on the adoption of these technologies, which rely on several social, economic, and political factors. At the same time, the immense potential for negative implications for some specific groups should not be ignored, but focused on addressing and mitigating those challenges.

2004 ◽  
Vol 22 (9) ◽  
pp. 3323-3333 ◽  
Author(s):  
V. Doumouya ◽  
Y. Cohen

Abstract. The longitudinal variation of the Equatorial Electrojet (EEJ) intensity has been revised including data from the equatorial station of Baclieu (Vietnam), where an unexpected enhancement of the EEJ magnetic effects is observed. The features of this longitudinal variation were also obtained with the CHAMP satellite, except in the Pacific and Atlantic Oceans, where no ground level data points were available.The EEJ magnetic signatures recorded on board the CHAMP satellite have been isolated for 325 passes in different longitude sectors around local noon. The results have been compared with the EEJ magnetic effects computed using the Empirical Equatorial Electrojet Model (3EM) proposed by Doumouya et al. (2003). The modeled EEJ magnetic effects are generally in good agreement with CHAMP observed EEJ magnetic signatures.


2018 ◽  
Vol 6 (3) ◽  
pp. 181-198 ◽  
Author(s):  
Bishal Bista

Rice (Oryza sativaL.) is a major staple food crop that feeds around 60% of the world’s population. It is a major food crop in terms of production, economy and is grown in all ecological zones of Nepal. In Nepal, traditional method of rice cultivation is widely accepted in which 20-25 days old seedlings are transplanted in the puddled field. Looming water scarcity, water-intensive traditional method of rice cultivation, escalating labour costs pressurize the development of alternative which is highly sustainable and profitable. Direct-seeded rice (DSR) offers a very good opportunity that can cope up the global need and reduces the water use to 50%, labour cost to 60% and increases productivity by 5-10%. It involves sowing of pre-germinated seeds into wet soil surface (wet seeding), dry soil surface (dry seeding) and standing water (water seeding). Weeds are the major constraint in direct-seeded rice (DSR) reducing the crop yield upto 90% and sometimes even crop failure. Enhanced nutrient use efficiency and integrated weed management can produce comparable yields to that of transplanted rice (TPR) encouraging many farmers to switch to DSR. Methane gas emission is significantly lower in DSR than in conventionally tilled puddled transplanted rice mitigating the world’s threat of global warming. Blast disease and root-knot nematode (RKN) are other important problems associated with DSR. Based on the evidences collected, the article reviews integrated package of cultivation technologies associated with DSR, advantages, constraints and likeliness of DSR to be the future of rice cultivation in Nepal.Int. J. Appl. Sci. Biotechnol. Vol 6(3): 181-198


2005 ◽  
Vol 52 (1-2) ◽  
pp. 39-47 ◽  
Author(s):  
P.F. Greenfield ◽  
D.J. Batstone

The debate as to whether carbon dioxide, methane, nitrous oxide and other greenhouse gas emissions will become subject to increasing regulation, increased restrictions, and probably to some form of carbon tax, has moved from a simple “yes” or “no” to “when”. Wastewater treatment plants will be significantly impacted by increased energy costs and by specific regulations and/or penalties associated with emissions of methane and nitrous oxide. In this paper, the greenhouse gases emissions of different wastewater process options are estimated. The paper outlines the increasing need for wastewater treatment plants to factor greenhouse gas mitigation issues into their medium- as and long-term strategies, and identifies anaerobic enhouse as processes as being at the core of such strategies. Further, the paper identifies a number of key research challenges to be addressed if such strategies are to play a larger role in attenuating the likely impacts of GHG mitigation requirements on wastewater treatment plant design and operation.


Author(s):  
Douglas Warner ◽  
John Tzilivakis ◽  
Andrew Green ◽  
Kathleen Lewis

Purpose This paper aims to assess agri-environment (AE) scheme options on cultivated agricultural land in England for their impact on agricultural greenhouse gas (GHG) emissions. It considers both absolute emissions reduction and reduction incorporating yield decrease and potential production displacement. Similarities with Ecological Focus Areas (EFAs) introduced in 2015 as part of the post-2014 Common Agricultural Policy reform, and their potential impact, are considered. Design/methodology/approach A life-cycle analysis approach derives GHG emissions for 18 key representative options. Meta-modelling is used to account for spatial environmental variables (annual precipitation, soil type and erosion risk), supplementing the Intergovernmental Panel on Climate Change methodology. Findings Most options achieve an absolute reduction in GHG emissions compared to an existing arable crop baseline but at the expense of removing land from production, risking production displacement. Soil and water protection options designed to reduce soil erosion and nitrate leaching decrease GHG emissions without loss of crop yield. Undersown spring cereals support decreased inputs and emissions per unit of crop yield. The most valuable AE options identified are included in the proposed EFAs, although lower priority is afforded to some. Practical implications Recommendations are made where applicable to modify option management prescriptions and to further reduce GHG emissions. Originality/value This research is relevant and of value to land managers and policy makers. A dichotomous key summarises AE option prioritisation and supports GHG mitigation on cultivated land in England. The results are also applicable to other European countries.


Author(s):  
Nguyen Le Trang ◽  
Bui Thi Thu Trang ◽  
Mai Van Trinh ◽  
Nguyen Tien Sy ◽  
Nguyen Manh Khai

Abstract: This study used the Denitrification-Decomposition (DNDC) model to calculate greenhouse gas emissions from a paddy rice cultivation in ​​Nam Dinh province. The results show that the total CH4 emission from paddy rice field in Nam Dinh province ranges from 404 to 1146kg/ha/year. Total N2O emissions range from 0.8 to 4.2 kg/ha/year; The total amount of CO2e varies between 10,000 and 30,000 kg CO2e / ha / year. CH4 emissions on typical salinealluvial soils, light mechanics are the highest and lowest on alkaline soils. Alluvium, alkaline soils have the highest N2O emissions and the lowest is the typical saline soils. The study has also mapped CH4, N2O and CO2e emissions for Nam Dinh province. Keywords: DNDC, Green house gas, agricultural sector, Nam Dinh,  GIS. References: [1] Bộ Tài nguyên và Môi trường, Báo cáo kỹ thuật kiểm kê quốc gia KNK của Việt Nam năm 2014, NXB Tài Nguyên Môi trường và Bản đồ Việt Nam, 2018.[2] D.L. Giltrap, C.Li, S. Saggar, DNDC: A process-based model of greenhouse gas fluxes from agricultural soils, Agriculture, Ecosystems & Environment,Volume 136 (2010), 292–300. https://doi:10.1016/j.agee.2009.06.014.[3] Viện Thổ nhưỡng Nông hóa, Báo cáo kết quả đề tài: “Nghiên cứu, đánh giá tài nguyên đất sản xuất nông nghiệp phục vụ chuyển đổi cơ cấu cây trồng chính có hiệu quả tại tỉnh Nam Định”, 2017.[4] Trung tâm Khí tượng thủy văn quốc gia – Bộ TN&MT, Số liệu thống kê khí tượng thủy văn các trạm khí tượng Văn Lý, Nam Định, Ninh Bình, Thái Bình năm 2014, 2015.[5] Niên giám thống kê tỉnh Nam Định, 2015.[6] T. Weaver, P. Ramachandran, L. Adriano, Policies for High Quality, Safe, and Sustainable Food Supply in the Greater Mekong Subregion. ADB: Manila. (2019) Chapter 7, 178-204.[7] Mai Văn Trịnh, Sổ tay hướng dẫn đo phát thải khí nhà kính trong canh tác lúa. NXB Nông nghiệp, 2016.    


Author(s):  
Jesusa C Beltran ◽  
Kristine Marie A Daplin ◽  
Rhemilyn Z Relado-Sevilla ◽  
Flordeliza H Bordey ◽  
Rowena G Manalili ◽  
...  

With the 2019 implementation of the Rice Tariffication Law (RTL), prices of ordinary white rice are expected to go down as a response to the influx of cheaper rice imports. This could put the local farmers at a disadvantage and could provoke them to reduce rice cultivation. Production of aromatic rice, a type of specialty rice with pandan-like scent induced by 2-acetyl-1-pyrroline (2AP) compound, could serve as a viable enterprise for the local farmers. Covering the provinces of Oriental Mindoro and Apayao, this study was conducted to produce baseline information and gain a comprehensive understanding of the production and potentials of aromatic rice. A survey was carried out to obtain 2017 cropping season farm-level data from 82 market-oriented farmer-respondents. Descriptive statistics and costs and returns structure were employed for data analysis. Results showed that venturing into aromatic rice cultivation can be a viable enterprise for the farmers as a coping mechanism with the ill effects of RTL. Yield level of modern aromatic rice varieties is at par with the national average. Aromatic rice cultivation also appeared to be profitable. Findings showed that the current local aromatic rice industry has high potential for expansion and opportunity for import substitution. Furthermore, top aromatic rice varieties in the country must be looked into to increase profitability. With these conclusions, strategies for yield enhancement, cost reduction, and premium quality preservation are recommended.


2020 ◽  
Author(s):  
Geoffrey Scott Roest ◽  
Kevin R Gurney ◽  
Scot M Miller ◽  
Jianming Liang

Abstract Background: Cities contribute more than 70% of global anthropogenic carbon dioxide (CO2) emissions and are leading the effort to reduce greenhouse gas (GHG) emissions through sustainable planning and development. However, urban greenhouse gas mitigation often relies on self-reported emissions estimates that may be incomplete and unverifiable via atmospheric monitoring of GHGs. We present the Hestia Scope 1 fossil fuel CO2 (FFCO2) emissions for the city of Baltimore, Maryland – a gridded annual and hourly emissions data product for 2010 through 2015 (Hestia-Baltimore v1.6). We also compare the Hestia-Baltimore emissions to overlapping Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory for 2014. Results: The Hestia-Baltimore emissions in 2014 totaled 1487.3 kt C (95% confidence interval of 1,158.9 – 1,944.9 kt C), with the largest emissions coming from onroad (34.2% of total city emissions), commercial (19.9%), residential (19.0%), and industrial (11.8%) sectors. Scope 1 electricity production and marine shipping were each generally less than 10% of the city’s total emissions. Baltimore’s self-reported Scope 1 FFCO2 emissions included onroad, natural gas consumption in buildings, and some electricity generating facilities within city limits. The self-reported Scope 1 FFCO2 total of 1,182.6 kt C was similar to the sum of matching emission sectors and fuels in Hestia-Baltimore v1.6. However, 20.5% of Hestia-Baltimore’s emissions were in sectors and fuels that were not included in the self-reported inventory. Petroleum use in buildings were omitted and all Scope 1 emissions from industrial point sources, marine shipping, nonroad vehicles, rail, and aircraft were categorically excluded.Conclusions: The omission of petroleum combustion in buildings and categorical exclusions of several sectors resulted in an underestimate of total Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory. Accurate Scope 1 FFCO2 emissions, along with Scope 2 and 3 emissions, are needed to inform effective urban policymaking for system-wide GHG mitigation. We emphasize the need for comprehensive Scope 1 emissions estimates for emissions verification and measuring progress towards Scope 1 GHG mitigation goals using atmospheric monitoring.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1269
Author(s):  
Suresh K. Kakraliya ◽  
Hanuman S. Jat ◽  
Tek B. Sapkota ◽  
Ishwar Singh ◽  
Manish Kakraliya ◽  
...  

Conventional rice–wheat (RW) rotation in the Indo-Gangetic Plains (IGP) of South Asia is tillage, water, energy, and capital intensive. Coupled with these, crop residue burning contributes significantly to greenhouse gas (GHG) emission and environmental pollution. So, to evaluate the GHG mitigation potential of various climate-smart agricultural practices (CSAPs), an on-farm research trial was conducted during 2014–2017 in Karnal, India. Six management scenarios (portfolios of practices), namely, Sc1—business as usual (BAU)/conventional tillage (CT) without residue, Sc2—CT with residue, Sc3—reduced tillage (RT) with residue + recommended dose of fertilizer (RDF), Sc4—RT/zero tillage (ZT) with residue + RDF, Sc5—ZT with residue + RDF + GreenSeeker + Tensiometer, and Sc6—Sc5 + nutrient-expert tool, were included. The global warming potential (GWP) of the RW system under CSAPs (Sc4, Sc5, and Sc6) and the improved BAU (Sc2 and Sc3) were 33–40% and 4–26% lower than BAU (7653 kg CO2 eq./ha/year), respectively. This reflects that CSAPs have the potential to mitigate GWP by ~387 metric tons (Mt) CO2 eq./year from the 13.5 Mha RW system of South Asia. Lower GWP under CSAPs resulted in 36–44% lower emission intensity (383 kg CO2 eq./Mg/year) compared to BAU (642 kg CO2 eq./Mg/year). Meanwhile, the N-factor productivity and eco-efficiency of the RW system under CSAPs were 32–57% and 70–105% higher than BAU, respectively, which reflects that CSAPs are more economically and environmentally sustainable than BAU. The wheat yield obtained under various CSAPs was 0.62 Mg/ha and 0.84 Mg/ha higher than BAU during normal and bad years (extreme weather events), respectively. Thus, it is evident that CSAPs can cope better with climatic extremes than BAU. Therefore, a portfolio of CSAPs should be promoted in RW belts for more adaptation and climate change mitigation.


Sign in / Sign up

Export Citation Format

Share Document