scholarly journals Application of DNDC Model for Mapping Greenhouse Gas Emission from Paddy Rice Cultivation in Nam Dinh Province

Author(s):  
Nguyen Le Trang ◽  
Bui Thi Thu Trang ◽  
Mai Van Trinh ◽  
Nguyen Tien Sy ◽  
Nguyen Manh Khai

Abstract: This study used the Denitrification-Decomposition (DNDC) model to calculate greenhouse gas emissions from a paddy rice cultivation in ​​Nam Dinh province. The results show that the total CH4 emission from paddy rice field in Nam Dinh province ranges from 404 to 1146kg/ha/year. Total N2O emissions range from 0.8 to 4.2 kg/ha/year; The total amount of CO2e varies between 10,000 and 30,000 kg CO2e / ha / year. CH4 emissions on typical salinealluvial soils, light mechanics are the highest and lowest on alkaline soils. Alluvium, alkaline soils have the highest N2O emissions and the lowest is the typical saline soils. The study has also mapped CH4, N2O and CO2e emissions for Nam Dinh province. Keywords: DNDC, Green house gas, agricultural sector, Nam Dinh,  GIS. References: [1] Bộ Tài nguyên và Môi trường, Báo cáo kỹ thuật kiểm kê quốc gia KNK của Việt Nam năm 2014, NXB Tài Nguyên Môi trường và Bản đồ Việt Nam, 2018.[2] D.L. Giltrap, C.Li, S. Saggar, DNDC: A process-based model of greenhouse gas fluxes from agricultural soils, Agriculture, Ecosystems & Environment,Volume 136 (2010), 292–300. https://doi:10.1016/j.agee.2009.06.014.[3] Viện Thổ nhưỡng Nông hóa, Báo cáo kết quả đề tài: “Nghiên cứu, đánh giá tài nguyên đất sản xuất nông nghiệp phục vụ chuyển đổi cơ cấu cây trồng chính có hiệu quả tại tỉnh Nam Định”, 2017.[4] Trung tâm Khí tượng thủy văn quốc gia – Bộ TN&MT, Số liệu thống kê khí tượng thủy văn các trạm khí tượng Văn Lý, Nam Định, Ninh Bình, Thái Bình năm 2014, 2015.[5] Niên giám thống kê tỉnh Nam Định, 2015.[6] T. Weaver, P. Ramachandran, L. Adriano, Policies for High Quality, Safe, and Sustainable Food Supply in the Greater Mekong Subregion. ADB: Manila. (2019) Chapter 7, 178-204.[7] Mai Văn Trịnh, Sổ tay hướng dẫn đo phát thải khí nhà kính trong canh tác lúa. NXB Nông nghiệp, 2016.    

2013 ◽  
Vol 69 (3) ◽  
pp. 451-463 ◽  
Author(s):  
D. W. de Haas ◽  
C. Pepperell ◽  
J. Foley

Primary operating data were collected from forty-six wastewater treatment plants (WWTPs) located across three states within Australia. The size range of plants was indicatively from 500 to 900,000 person equivalents. Direct and indirect greenhouse gas emissions were calculated using a mass balance approach and default emission factors, based on Australia's National Greenhouse Energy Reporting (NGER) scheme and IPCC guidelines. A Monte Carlo-type combined uncertainty analysis was applied to the some of the key emission factors in order to study sensitivity. The results suggest that Scope 2 (indirect emissions due to electrical power purchased from the grid) dominate the emissions profile for most of the plants (indicatively half to three quarters of the average estimated total emissions). This is only offset for the relatively small number of plants (in this study) that have significant on-site power generation from biogas, or where the water utility purchases grid electricity generated from renewable sources. For plants with anaerobic digestion, inventory data issues around theoretical biogas generation, capture and measurement were sometimes encountered that can skew reportable emissions using the NGER methodology. Typically, nitrous oxide (N2O) emissions dominated the Scope 1 (direct) emissions. However, N2O still only accounted for approximately 10 to 37% of total emissions. This conservative estimate is based on the ‘default’ NGER steady-state emission factor, which amounts to 1% of nitrogen removed through biological nitrification-denitrification processing in the plant (or indicatively 0.7 to 0.8% of plant influent total nitrogen). Current research suggests that true N2O emissions may be much lower and certainly not steady-state. The results of this study help to place in context research work that is focused on direct emissions from WWTPs (including N2O, methane and carbon dioxide of non-biogenic origin). For example, whereas non-biogenic CO2 contributions are relatively minor, it appears that opportunities to reduce indirect emissions as a result of modest savings in power consumption are at least in the same order as those from reducing N2O emissions. To avoid potentially high reportable emissions under NGER guidelines, particularly for methane, the onus is placed on WWTP managers to ensure that accurate plant monitoring operating records are kept.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Hesam Kamyab ◽  
Jeng Shiun Lim ◽  
Tayebeh Khademi ◽  
Wai Shin Hod ◽  
Rahmalan Ahmad ◽  
...  

Waste generation nowadays is rising in the world and it seems hard to prevent it. Solid Waste Management (SWM) has been a major problem worldwide in most of the fast growing towns and cities among the developing countries all around the world. Food waste and green waste constitute high volumes of municipal solid waste (MSW). The application of compost in the agricultural sector can contribute to sustainable soil health and other co-benefits. The compost produced from biological waste does not contain any chemicals unfavorable to living soil. The objective of this research was to calculate the greenhouse gas emission from the compost processed from the food and green wastes generated on-campus in Universiti Teknologi Malaysia (UTM) as a pilot project. The result indicated that the composting process promotes the university as a green campus by converting organic wastes into valuable products such as organic fertilizer.


2009 ◽  
Vol 55 (No. 8) ◽  
pp. 311-319 ◽  
Author(s):  
Z. Exnerová ◽  
E. Cienciala

As a part of its obligations under the Climate Convention, the Czech Republic must annually estimate and report its anthropogenic emissions of greenhouse gases. This also applies for the sector of agriculture, which is one of the greatest producers of methane and nitrous oxide emissions. This paper presents the approaches applied to estimate emissions in agricultural sector during the period 1990–2006. It describes the origin and sources of emissions, applied methodology, parameters and emission estimates for the sector of agriculture in the country. The total greenhouse gas emissions reached 7644 Gg CO<sub>2</sub> eq. in 2006. About 59% (4479 Gg CO<sub>2</sub> eq.) of these emissions has originated from agricultural soils. This quantity ranks agriculture as the third largest sector in the Czech Republic representing 5.3% of the total greenhouse gas emissions (GHG). The emissions under the Czech conditions consist mainly of emissions from enteric fermentation, manure management and agricultural soils. During the period 1990–2006, GHG emissions from agriculture decreased by 50%, which was linked to reduced cattle population and amount of applied fertilizers. The study concludes that the GHG emissions in the sector of agriculture remain significant and their proper assessment is required for sound climate change adaptation and mitigation policies.


Agriculture ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 29 ◽  
Author(s):  
Yo Toma ◽  
Nukhak Nufita Sari ◽  
Koh Akamatsu ◽  
Shingo Oomori ◽  
Osamu Nagata ◽  
...  

Green manure application helps maintain soil fertility, reduce chemical fertilizer use, and carbon sequestration in the soil. Nevertheless, the application of organic matter in paddy fields induces CH4 and N2O emissions. Prolonging mid-season drainage reduces CH4 emissions in paddy fields. Therefore, the combined effects of green manure application and mid-season drainage prolongation on net greenhouse gas emission (NGHGE) were investigated. Four experimental treatments were set up over a 2-year period: conventional mid-season drainage with (CMG) and without (CM) green manure and prolonged (4 or 7 days) mid-season drainage with (PMG) and without (PM) green manure. Astragalus sinicus L. seeds were sown in autumn and incorporated before rice cultivation. No significant difference in annual CH4 and N2O emissions, heterotrophic respiration, and NGHGE between treatments were observed, indicating that green manure application and mid-season drainage prolongation did not influence NGHGE. CH4 flux decreased drastically in PM and PMG during mid-season drainage under the hot and dry weather conditions. However, increasing applied carbon increases NGHGE because of increased CH4 and Rh. Consequently, combination practice of mid-season drainage prolongation and green manure utilization can be acceptable without changing NGHGE while maintaining grain yield in rice paddy fields under organically managed rice paddy fields.


2013 ◽  
Vol 04 (03) ◽  
pp. 1350008 ◽  
Author(s):  
NIKOLINKA SHAKHRAMANYAN ◽  
UWE A. SCHNEIDER ◽  
BRUCE A. McCARL

Climate change may affect the use of pesticides and their associated environmental and human health impacts. This study employs and modifies a partial equilibrium model of the US agricultural sector to examine the effects of alternative regulations of the pesticide and greenhouse gas emission externality. Simulation results indicate that without pesticide externality regulations and low greenhouse gas emission mitigation strategy, climate change benefits from increased agricultural production in the US are more than offset by increased environmental costs. Although the combined regulation of pesticide and greenhouse gas emission externalities increases farmers' production costs, their net income effects are positive because of price adjustments and associated welfare shifts from consumers to producers. The results also show heterogeneous impacts on preferred pest management intensities across major crops. While pesticide externality regulations lead to substantial increases in total water use, climate policies induce the opposite effect.


Author(s):  
Wim De Vries ◽  
Enzai Du ◽  
Klaus Butterbach Bahl ◽  
Lena Schulte Uebbing ◽  
Frank Dentener

Human activities have rapidly accelerated global nitrogen (N) cycling since the late 19th century. This acceleration has manifold impacts on ecosystem N and carbon (C) cycles, and thus on emissions of the greenhouse gases nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4), which contribute to climate change. First, elevated N use in agriculture leads to increased direct N2O emissions. Second, it leads to emissions of ammonia (NH3), nitric oxide (NO), and nitrogen dioxide (NO2) and leaching of nitrate (NO3−), which cause indirect N2O emissions from soils and waterbodies. Third, N use in agriculture may also cause changes in CO2 exchange (emission or uptake) in agricultural soils due to N fertilization (direct effect) and in non-agricultural soils due to atmospheric NHx (NH3+NH4) deposition (indirect effect). Fourth, NOx (NO+NO2) emissions from combustion processes and from fertilized soils lead to elevated NOy (NOx+ other oxidized N) deposition, further affecting CO2 exchange. As most (semi-) natural terrestrial ecosystems and aquatic ecosystems are N limited, human-induced atmospheric N deposition usually increases net primary production (NPP) and thus stimulates C sequestration. NOx emissions, however, also induce tropospheric ozone (O3) formation, and elevated O3 concentrations can lead to a reduction of NPP and plant C sequestration. The impacts of human N fixation on soil CH4 exchange are insignificant compared to the impacts on N2O and CO2 exchange (emissions or uptake). Ignoring shorter lived components and related feedbacks, the net impact of human N fixation on climate thus mainly depends on the magnitude of the cooling effect of CO2 uptake as compared to the magnitude of the warming effect of (direct and indirect) N2O emissions. The estimated impact of human N fixation on N2O emission is 8.0 (7.0–9.0) Tg N2O-N yr−1, which is equal 1.02 (0.89–1.15) Pg CO2-C equivalents (eq) yr−1. The estimated CO2 uptake due to N inputs to terrestrial, freshwater, and marine ecosystems equals −0.75 (−0.56 to −0.97) Pg CO2-C eq yr−1. At present, the impact of human N fixation on increased CO2 sequestration thus largely (on average near 75%) compensates the stimulating effect on N2O emissions. In the long term, however, effects on ecosystem CO2 sequestration are likely to diminish due to growth limitations by other nutrients such as phosphorus. Furthermore, N-induced O3 exposure reduces CO2 uptake, causing a net C loss at 0.14 (0.07–0.21) Pg CO2-C eq yr−1. Consequently, human N fixation causes an overall increase in net greenhouse gas emissions from global ecosystems, which is estimated at 0.41 (−0.01–0.80) Pg CO2-C eq yr−1. Even when considering all uncertainties, it is likely that human N inputs lead to a net increase in global greenhouse gas emissions. These estimates are based on most recent science and modeling approaches with respect to: (i) N inputs to various ecosystems, including NH3 and NOx emission estimates and related atmospheric N (NH3 and NOx) deposition and O3 exposure; (ii) N2O emissions in response to N inputs; and (iii) carbon exchange in responses to N inputs (C–N response) and O3 exposure (C–O3 response), focusing on the global scale. Apart from presenting the current knowledge, this article also gives an overview of changes in the estimates of those fluxes and C–N response factors over time, including debates on C–N responses in literature, the uncertainties in the various estimates, and the potential for improving them.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Niclas Scott Bentsen ◽  
Søren Larsen ◽  
Inge Stupak

Abstract Background The EU bioeconomy strategy aims to accelerate the European bioeconomy and its contributions to the United Nations Sustainable Development Goals and the Paris Agreement. National policies and strategies in many countries promote their bioeconomies. The importance of agricultural crops and residues as raw materials for the bioeconomy is increasingly recognised, but agricultural production also contributes to large impacts on nature and environment. With the aim of assessing the governance measures and their effectiveness in addressing the sustainability of bioenergy and biofuel production, the purpose of this study was to map the governance complex relevant to agricultural crop production in Denmark, and to identify the achievements, challenges and lessons learned. Methods The analysis is based on a review and assessment of publicly available databases, inventory reports and scientific literature on governance measures and their effectiveness. Governance here includes a variety of legislation, agreements, conventions and standardisation. Environmental sustainability is represented by greenhouse gas emissions from the agricultural sector, soil carbon, water quality and biodiversity. Results The agricultural sector has a significant impact on Danish climate performance and on landscapes in the form of soil carbon losses, leaching of nutrients to water bodies and pressures on biodiversity. The governance complex addressing these issues is made up of a variety of state regulation and co-regulation between state and firms, state and NGOs, or NGOs and firms. Much regulation is adopted from EU directives and implemented nationally. Conclusions The analysis found that greenhouse gas emission is a virtually unregulated field and additional regulation is required to live up to Denmark’s 2030 emission reduction targets. The regulatory framework for soil carbon is criticised for its complexity, its competing instruments and its recognition procedures of voluntary co-regulation. For water quality governance measures in place have improved water quality, but it is still difficult to achieve the goals of the Water Framework Directive. It remains a challenge to protect biodiversity in agriculture. Biodiversity is mainly governed by national and supranational regulation, but co-regulating between state and firms and NGOs and firms have been initiated in the framework of the Agricultural Agreement.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1396
Author(s):  
Paulina Mielcarek-Bocheńska ◽  
Wojciech Rzeźnik

Agriculture is one of the main sources of greenhouse gas (GHG) emissions and has great potential for mitigating climate change. The aim of this study is to analyze the amount, dynamics of changes, and structure of GHG emissions from agriculture in the EU in the years 2005–2018. The research based on data about GHG collected by the European Environment Agency. The structure of GHG emissions in 2018 in the EU is as follows: enteric fermentation (45%), agricultural soils (37.8%), manure management (14.7%), liming (1.4%), urea application (1%), and field burning of agricultural residues (0.1%). Comparing 2018 with the base year, 2005, emissions from the agricultural sector decreased by about 2%, which is less than the assumed 10% reduction of GHG emissions in the non-emissions trading system (non-ETS) sector. The ambitious goals set by the EU for 2030 assume a 30% reduction in the non-ETS sector. This will require a significant reduction in GHG emissions from agriculture. Based on the analysis of the GHG emission structure and available reduction techniques, it was calculated that in this period, it should be possible to reduce emissions from agriculture by about 15%.


2011 ◽  
Vol 8 (8) ◽  
pp. 2377-2390 ◽  
Author(s):  
Y. Wang ◽  
G. J. Sun ◽  
F. Zhang ◽  
J. Qi ◽  
C. Y. Zhao

Abstract. Agricultural ecosystems are major sources of greenhouse gas (GHG) emissions, specifically nitrous oxide (N2O) and carbon dioxide (CO2). An important method of investigating GHG emissions in agricultural ecosystems is model simulation. Field measurements quantifying N2O and CO2 fluxes were taken in a summer maize ecosystem in Zhangye City, Gansu Province, in northwestern China in 2010. Observed N2O and CO2 fluxes were used for validating flux predictions by a DeNitrification-DeComposition (DNDC) model. Then sensitivity tests on the validated DNDC model were carried out on three variables: climatic factors, soil properties and agricultural management. Results indicated that: (1) the factors that N2O emissions were sensitive to included nitrogen fertilizer application rate, manure amendment and residue return rate; (2) CO2 emission increased with increasing manure amendment, residue return rate and initial soil organic carbon (SOC); and (3) net global warming potential (GWP) increased with increasing N fertilizer application rate and decreased with manure amendment, residue return rate and precipitation increase. Simulation of the long-term impact on SOC, N2O and net GWP emissions over 100 yr of management led to the conclusion that increasing residue return rate is a more efficient method of mitigating GHG emission than increasing fertilizer N application rate in the study area.


Sign in / Sign up

Export Citation Format

Share Document