How monkeys see a forest: genetic variation and population genetic structure of two forest primates

2014 ◽  
Vol 16 (3) ◽  
pp. 559-569 ◽  
Author(s):  
David N. M. Mbora ◽  
Mark A. McPeek
Nematology ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Rasha Haj Nuaima ◽  
Johannes Roeb ◽  
Johannes Hallmann ◽  
Matthias Daub ◽  
Holger Heuer

Summary Characterising the non-neutral genetic variation within and among populations of plant-parasitic nematodes is essential to determine factors shaping the population genetic structure. This study describes the genetic variation of the parasitism gene vap1 within and among geographic populations of the beet cyst nematode Heterodera schachtii. Forty populations of H. schachtii were sampled at four spatial scales: 695 km, 49 km, 3.1 km and 0.24 km. DGGE fingerprinting showed significant differences in vap1 patterns among populations. High similarity of vap1 patterns appeared between geographically close populations, and occasionally among distant populations. Analysis of spatially sampled populations within fields revealed an effect of tillage direction on the vap1 similarity for two of four studied fields. Overall, geographic distance and similarity of vap1 patterns of H. schachtii populations were negatively correlated. In conclusion, the population genetic structure was shaped by the interplay between the genetic adaptation and the passive transport of this nematode.


The Condor ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 440-445 ◽  
Author(s):  
Kathryn P. Huyvaert ◽  
Patricia G. Parker

Abstract We used four variable microsatellite loci to examine the distribution of genetic variation and degree of genetic structuring among three subcolonies of Waved Albatrosses (Phoebastria irrorata). The breeding population of this species is almost entirely limited to the island of Española in the Galápagos Archipelago. Such strong philopatry could lead to population genetic structure among subcolonies on the island. Pairwise values of the FST analog, θ, calculated from microsatellite genotypes, were all less than 0.012, indicating little genetic differentiation and the presence of gene flow throughout the population.


2001 ◽  
Vol 79 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Catherine A Mossman ◽  
Peter M Waser

Habitat fragmentation may have significant consequences for population genetic structure because geographic distance and physical barriers may impede gene flow. In this study, we investigated whether habitat fragmentation affects fine-scale genetic structure of populations of the white-footed mouse (Peromyscus leucopus). We studied 27 populations of P. leucopus, 17 in continuous forest and 10 in isolated woodlots. Populations were trapped in pairs that were either 500 or 2000 m apart. We estimated genetic variation at eight P. leucopus specific microsatellite DNA loci. We discovered significant genetic variation within all populations, but no significant differences in numbers of alleles or heterozygosity between populations. For given population pairs, we found significant genetic differentiation even at very short distances, based on multilocus FST estimates. The amount of genetic differentiation between population pairs was similar in the two habitats. Distance had a marginal effect on genetic differentiation when comparing paired populations separated by 2000 m with those separated by 500 m. However, at a larger geographic scale, there was no evidence of isolation by distance. This study confirms that microsatellite-based studies have the potential to detect interpopulation differentiation at an extremely local scale, and suggests that habitat fragmentation has surprisingly few effects on P. leucopus genetic structure.


Botany ◽  
2009 ◽  
Vol 87 (11) ◽  
pp. 1089-1095 ◽  
Author(s):  
Stephen B. Heard ◽  
Linley K. Jesson ◽  
Kirby Tulk

The Gulf of St. Lawrence aster ( Symphyotrichum laurentianum (Fernald) G.L. Nesom) is an endemic annual of saline habitats in the southern Gulf of St. Lawrence. It is listed as a threatened species, and has recently experienced population declines in much of its range. We used 11 allozyme markers to assay population genetic variation in six wild populations of S. laurentianum from the Magdalen Islands, Quebec (QC), the only remaining wild population from Prince Edward Island National Park (PEI), and a greenhouse population founded in 1999 with seed collected from PEI. Symphyotrichum laurentianum harbours moderate genetic diversity (Ps = 0.36, As = 1.54), with only modest spatial genetic structure (pairwise FST < 0.15) and no significant isolation by distance. The PEI population had greatly reduced allelic diversity compared with the populations from the Magdalen Islands, which likely act as a reservoir of genetic variation in S. laurentianum. Recent loss of alleles during population decline in PEI is suggested by the retention of greater allelic diversity in the greenhouse population. Estimates of breeding structure suggest small but nonzero rates of outcross pollination (FIS = 0.73, 95% CI = 0.48–0.97; outcrossing rate ∼16%). Population genetic structure in S. laurentianum can inform those forming and carrying out conservation and recovery plans for this threatened species.


1988 ◽  
Vol 36 (3) ◽  
pp. 273 ◽  
Author(s):  
DJ Coates

There are 10 known populations of Acacia anomala occurring in two small disjunct groups some 30 km apart. The Chittering populations reproduce sexually whereas the Kalamunda populations appear to reproduce almost exclusively by vegetative multiplication. The level and distribution of genetic variation were studied at 15 allozyme loci. Two loci were monomorphic in all populations. In the Chittering populations the mean number of alleles per locus was 2.0 and the expected panmictic heterozygosity (genetic diversity) 0.209. In the Kalamunda populations the mean number of alleles per locus was 1.15 and the expected panmictic heterozygosity 0.079, although the observed heterozygosity of 0.150 was only marginally less than the Chittering populations (0.177). These data support the contention that the Chittering populations are primarily outcrossing whereas the Kalamunda populations are clonal, with each population consisting of individuals with identical and, in three of the four populations, heterozygous, multilocus genotypes. The level of genetic diversity within the Chittering populations is high for plants in general even though most populations are relatively smsll and isolated. It is proposed that either the length of time these populations have been reduced in size and isolated is insufficient for genetic diversity to be reduced or the genetic system of this species is adapted to small population conditions. Strategies for the adequate conservation of the genetic resources of Acacia anomala are discussed.


Polar Record ◽  
2002 ◽  
Vol 38 (206) ◽  
pp. 219-224
Author(s):  
Marianne Philipp

AbstractA comparison of the population genetic structure of Armeria maritima in Iceland with an earlier study in Denmark was undertaken. Ten populations were sampled in Iceland for isozyme analysis. Most populations showed Hardy-Weinberg proportions, but a higher number than statistically expected possessed too many homozygotes. This could indicate a breakdown of the self-incompatibility system in some cases. Statistically significant differences in allelic frequencies among populations were observed but no positive correlation between genetic distance and geographic position was found. Gene diversity in Iceland was lower than in Denmark although the alleles occurring in Iceland were the same as those found in Denmark. Missing alleles were those found with lowest frequency in Denmark. It is suggested that A. maritima in Iceland has immigrated from the southern part of the distribution post-glacially, leaving behind the rare alleles.


2021 ◽  
Author(s):  
◽  
Angel Jimenez Brito

<p>Mugil cephalus is a cosmopolitan fish species found in most coastal waters from tropical to temperate zones. It is a species common in the near-shore marine environment, and known to reside in estuarine and freshwater systems. Adult M. cephalus move out to sea to spawn in aggregations. Their larvae can drift on surface ocean currents for over a month before recruitment to nursery grounds. Mugil cephalus is a species that is closely associated with the coastal environment, but it is capable of interoceanic migrations. Population genetic studies have reported high levels of genetic differentiation among populations in the Mediterranean, Atlantic and western Pacific. However, there is no evidence to suggest reproductive incompatibility has arisen among populations. In New Zealand M. cephalus supports important recreational, commercial and customary fisheries, but very little is known about the distribution and connectivity among populations.  The aim of this study was to use nuclear microsatellite DNA (msatDNA) and mitochondrial DNA (mtDNA) markers to describe the population genetic structure, connectivity patterns and to determine the phylogeographic history of New Zealand M. cephalus populations. Total of 850 samples were collected (576 adults and 274 juveniles) during the summers of 2010 and 2014-2015 from 15 locations around coastal and inland waters of the North Island, and one location in Marlborough Sounds. In addition, 245 mtDNA sequences were added from previously published studies and used to outgroup the New Zealand population and place it into the context of the other Pacific populations.  Seven msatDNA loci were isolated and used to determine the population genetic structure and connectivity patterns of M. cephalus in New Zealand. Admixture of four genetically distinct groups or populations was identified and a chaotic spatial distribution of allele frequencies. Within each population there was significant gene flow among locations, no pattern of genetic isolation-by-distance was identified and there was a high proportion of non-migrant individuals. There was evidence of bottlenecks and seasonal reproductive variation of adults, which could explain the significant shifts in the effective population size among locations.  To test whether the pattern of genetic variation in M. cephalus populations was the result of seasonal variability in the reproductive success of adults, DNA from adult and juvenile samples were used to test for differences in the levels of genetic variation between generations (cohorts). Juveniles were grouped by age classes and compared to the adults. The levels of genetic diversity within the groups of juveniles were compared to the adult population and significant genetic bottlenecks between juveniles and adults were detected. This pattern was consistent with the Sweepstake-Reproductive-Success hypothesis. Two spawning groups in the adults were identified, an early spawning group and a late spawning group.  The analysis of DNA sequence data from the mtDNA Cytochrome Oxidase subunit 1 (COX1) gene and D-loop region showed two sympatric haplogroups of M. cephalus. New Zealand was most likely colonised by M. cephalus migrants from different population sources from the Pacific first ~50,000 and a second wave of migrants from Australia between ~20, 000 and ~16,000 years ago. High levels of gene flow were detected, but there has not been enough time for genetic drift to completely sort the lineages.  The findings of this thesis research will help with the understanding of aspects of M. cephalus dispersal and the genetic structure of populations. The patterns of connectivity can be used to better align the natural boundaries of wild populations to the fishery management stock structure. Understanding the reproductive units, levels of genetic diversity and the patterns of reproduction of M. cephalus will assist management efforts to focus on the key habitats threats, risks and the long-term sustainability of the species.</p>


Sign in / Sign up

Export Citation Format

Share Document