Synthesis of heterocyclic ring-fused quinones (microreview)

Author(s):  
Anastasija Gaile ◽  
Nelli Batenko
Keyword(s):  
2020 ◽  
Author(s):  
Marat Korsik ◽  
Edwin Tse ◽  
David Smith ◽  
William Lewis ◽  
Peter J. Rutledge ◽  
...  

<p></p><p>We have discovered and studied a <i>tele</i>substitution reaction in a biologically important heterocyclic ring system. Conditions that favour the <i>tele</i>-substitution pathway were identified: the use of increased equivalents of the nucleophile or decreased equivalents of base, or the use of softer nucleophiles, less polar solvents and larger halogens on the electrophile. Using results from X-ray crystallography and isotope labelling experiments a mechanism for this unusual transformation is proposed. We focused on this triazolopyrazine as it is the core structure of the <i>in vivo </i>active anti-plasmodium compounds of Series 4 of the Open Source Malaria consortium.</p> <p> </p> <p>Archive of the electronic laboratory notebook with the description of all conducted experiments and raw NMR data could be accessed via following link <a href="https://ses.library.usyd.edu.au/handle/2123/21890">https://ses.library.usyd.edu.au/handle/2123/21890</a> . For navigation between entries of laboratory notebook please use file "Strings for compounds in the article.pdf" that works as a reference between article codes and notebook codes, also this file contain SMILES for these compounds. </p><br><p></p>


Author(s):  
Neha V. Bhilare ◽  
Pratibha B. Auti ◽  
Vinayak S. Marulkar ◽  
Vilas J. Pise

: Thiophenes are one among the abundantly found heterocyclic ring systems in many biologically active compounds. Moreover various substituted thiophenes exert numerous pharmacological actions on account of their isosteric resemblance with compounds of natural origin thus rendering them with diverse actions like antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antiallergic, hypotensives etc.. In this review we specifically explore the chemotherapeutic potential of variety of structures consisting of thiophene scaffolds as prospective anticancer agents.


Author(s):  
Shubham Khot ◽  
Pratibha B. Auti ◽  
Samrat A. Khedkar

: The current review discusses the different synthetic pathways for one of the most important and interesting heterocyclic ring systems 1,4-dihydropyridine. This cyclic system depicts diverse pharmacological action at several receptors, channels, and enzymes. Dihydropyridine moiety plays an important role in several calcium-channel blockers. Moreover, it has been exploited for the treatment of a variety of cardiovascular diseases due to its potential antihypertensive, anti-angina, vasodilator, and cardiac depressant activities. Furthermore, it also shows antibacterial, anticancer, antileishmanial, anticoagulant, anticonvulsant, anti-tubercular, antioxidant, antiulcer, and neuroprotective properties. Several reports have demonstrated dihydropyridine derivatives as a potentiator of cystic fibrosis transmembrane conductance regulator protein, potent antimalarial agent and HIV-1 protease inhibitor. Herein, we have briefly reviewed different novel chemistry and synthesis of 1,4-dihydropyridine.


Author(s):  
Neelottama Kushwaha ◽  
C S Sharma

: Triazine is the six-membered heterocyclic ring containing three nitrogen which replaces carbon-hydrogen unit in the benzene ring. Based on nitrogen position present in the ring system, it is categorized in three isomeric forms i.e.1, 2, 3-triazine (vicinal triazine), 1, 2, 4-triazine (asymmetrical triazine or isotriazine) and 1, 3, 5-triazine (symmetrical or s-triazine or cyanidine). Triazines have weakly basic property. Its isomers have much weaker resonance energy than benzene structure, so nucleophilic substitution reactions are more preferred than electrophilic substitution reactions. Triazine isomers and their derivatives are known to play important roles possessing various activities in medicinal and agricultural fields such as anti-cancer, antiviral, fungicidal, insecticidal, bactericidal, herbicidal, antimalarial and antimicrobial agents.


2019 ◽  
Vol 19 (15) ◽  
pp. 1219-1254 ◽  
Author(s):  
Abhinav Prasoon Mishra ◽  
Ankit Bajpai ◽  
Awani Kumar Rai

: Nowadays, heterocyclic compounds act as a scaffold and are the backbone of medicinal chemistry. Among all of the heterocyclic scaffolds, 1,4-Dihydropyridine (1,4-DHP) is one of the most important heterocyclic rings that possess prominent therapeutic effects in a very versatile manner and plays an important role in synthetic, medicinal, and bioorganic chemistry. The main aim of the study is to review and encompass relevant studies related to 1,4-DHP and excellent therapeutic benefits of its derivatives. An extensive review of Pubmed-Medline, Embase and Lancet’s published articles was done to find all relevant studies on the activity of 1,4-DHP and its derivatives. 1,4-DHP is a potent Voltage-Gated Calcium Channel (VGCC) antagonist derivative which acts as an anti-hypertensive, anti- anginal, anti-tumor, anti-inflammatory, anti-tubercular, anti-cancer, anti-hyperplasia, anti-mutagenic, anti-dyslipidemic, and anti-ulcer agent. From the inferences of the study, it can be concluded that the basic nucleus, 1,4-DHP which is a voltage-gated calcium ion channel blocker, acts as a base for its derivatives that possess different important therapeutic effects. There is a need of further research of this basic nucleus as it is a multifunctional moiety, on which addition of different groups can yield a better drug for its other activities such as anti-convulsant, anti-oxidant, anti-mutagenic, and anti-microbial. This review would be significant for further researches in the development of several kinds of drugs by representing successful matrix for the medicinal agents.


2019 ◽  
Vol 16 (11) ◽  
pp. 898-905
Author(s):  
Harun Patel ◽  
Rahul Pawara ◽  
Sanjay Surana

Quinazoline is the six-membered heterocyclic ring system reported for its versatile biological activities. This characteristic feature of quinazoline makes it a good template for a lead generation library. Ring opening is one of the major concerns in the synthesis of quinazolin-4(3H)-one that results in diamide formation. Here, alternative fusion strategy is reported, which is a time-saving and costeffective method to overcome the ring opening problem associated with the synthesis of benzo[ d][1,3]oxazin-4-one and quinazolin-4(3H)-one.


1980 ◽  
Vol 45 (9) ◽  
pp. 2425-2432
Author(s):  
Jiří Krechl ◽  
Josef Kuthan

It has been demonstrated that the EHT method predicts an almost plane form of the heterocyclic ring in 1-methyl-1,4-dihydronicotinamide I (R = CH3) and also reflects satisfactorily character of the covalent bonds in the 4-methylene group. An attempt has been made of calculation of the reaction profile of elimination of the centre 4', and electronic mechanism of its splitting off is discussed.


1983 ◽  
Vol 48 (11) ◽  
pp. 3307-3314 ◽  
Author(s):  
Petr Nesvadba ◽  
Petr Štrop ◽  
Josef Kuthan

The quaternary pyridinium salts Ia-Ic react with alkaline solution of potassium ferricyanide to give the condensed heterocyclic derivatives IIIa, b, IV, whereas the salts Id-If give the pyrrole derivatives IIa-IIc under the same conditions. The diaza heterocycle IIIa reacts with methyl iodide to give methoiodide V, whereas by action of bromine it produces two monobromo derivatives VIa, b. The pyrrole derivatives IIa, b give monobromo derivatives IId, e on bromination. A probable mechanism of formation of the heterocyclic derivatives is discussed.


2021 ◽  
Author(s):  
Fiona C. Rodrigues ◽  
N. V. Anil Kumar ◽  
Gangadhar Hari ◽  
K. S. R. Pai ◽  
Goutam Thakur

AbstractCurcumin, a potent phytochemical derived from the spice element turmeric, has been identified as a herbal remedy decades ago and has displayed promise in the field of medicinal chemistry. However, multiple traits associated with curcumin, such as poor bioavailability and instability, limit its effectiveness to be accepted as a lead drug-like entity. Different reactive sites in its chemical structure have been identified to incorporate modifications as attempts to improving its efficacy. The diketo group present in the center of the structural scaffold has been touted as the group responsible for the instability of curcumin, and substituting it with a heterocyclic ring contributes to improved stability. In this study, four heterocyclic curcumin analogues, representing some broad groups of heterocyclic curcuminoids (isoxazole-, pyrazole-, N-phenyl pyrazole- and N-amido-pyrazole-based), have been synthesized by a simple one-pot synthesis and have been characterized by FTIR, 1H-NMR, 13C-NMR, DSC and LC–MS. To predict its potential anticancer efficacy, the compounds have been analyzed by computational studies via molecular docking for their regulatory role against three key proteins, namely GSK-3β—of which abnormal regulation and expression is associated with cancer; Bcl-2—an apoptosis regulator; and PR which is a key nuclear receptor involved in breast cancer development. One of the compounds, isoxazole-curcumin, has consistently indicated a better docking score than the other tested compounds as well as curcumin. Apart from docking, the compounds have also been profiled for their ADME properties as well as free energy binding calculations. Further, the in vitro cytotoxic evaluation of the analogues was carried out by SRB assay in breast cancer cell line (MCF7), out of which isoxazole-curcumin (IC50–3.97 µM) has displayed a sevenfold superior activity than curcumin (IC50–21.89 µM). In the collation of results, it can be suggested that isoxazole-curcumin behaves as a potential lead owing to its ability to be involved in a regulatory role with multiple significant cancer proteins and hence deserves further investigations in the development of small molecule-based anti-breast cancer agents. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document