Fatty Acids from Fritillaria pallidiflora and Their Biological Activity

2018 ◽  
Vol 54 (5) ◽  
pp. 959-960 ◽  
Author(s):  
Q. Dong ◽  
H. Yimamu ◽  
P. Rozi ◽  
M. Bakri ◽  
A. Wali ◽  
...  
Fisheries ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. 4-8
Author(s):  
Elena Kharenko ◽  
Anna Sopina

The formation of collective immunity, in the context of the COVID-19 pandemic, is directly related to the state of health of each member of the community, therefore, taking care of the health of citizens becomes one of the priority tasks of any state. Recent studies have shown that vitamin D, essentially being a hormone D, strengthens the innate immunity associated with the exchange of zinc in the human body, which, in turn, affects the replication of viruses and accel-erates their excretion. Omega-3 fatty acids have a wide spectrum of biological activity, includ-ing in the treatment of inflammatory processes of various etiologies.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
WS Suh ◽  
CS Kim ◽  
KJ Park ◽  
JM Cha ◽  
TH Lee ◽  
...  

2016 ◽  
Vol 34 ◽  
pp. 71-75 ◽  
Author(s):  
Thorsteinn Loftsson ◽  
Biljana Ilievska ◽  
Gudrun Marta Asgrimsdottir ◽  
Orri Thor Ormarsson ◽  
Einar Stefansson

1980 ◽  
Vol 30 (3) ◽  
pp. 862-873
Author(s):  
P Kiley ◽  
S C Holt

The lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans strains Y4 and N27 was isolated by the phenol-water procedure. Morphologically, the molecule consisted of ribbon and branched filaments which comprised 3% of the cellular dry weight. Chemical analysis of the isolated and purified LPSs of both strains showed them to consist of carbohydrate, lipid, 2-keto-3-deoxyoctonate, heptose, hexosamine, and phosphate. The major fatty acids of the lipid A moiety were saturated C14 and beta-OH C14 compounds. Rhamnose, fucose, galactose, glucose, heptose, glucosamine, and galactosamine comprised the monosaccharide portion of the LPS. Biological activity studies revealed both LPS molecules to be active in the Schwartzman reaction and in in vitro 45Ca bone resorption, as well as in macrophage activation and lethality and in platelet aggregation.


2020 ◽  
Vol 82 (6) ◽  
pp. 35-42
Author(s):  
O.S. Brovarska ◽  
◽  
L.D. Varbanets ◽  
S.V. Kalinichenko ◽  
◽  
...  

Lipopolysaccharides (LPS) are specific components of the cell envelope of gram-negative bacteria, located at the external surface of their outer membrane and performing a number of important physicochemical and biological functions. The widespread in nature are representatives of Enterobacteriaceae family. Among them there are saprotrophic, useful human symbionts, as well as causative agents of acute intestinal infections. The role of saprophytic intestinal microbiota is not limited only to its participation in the digestion process. The endotoxin released as a result of self-renewal of the cell pool of Escherichia coli partially enters the portal blood and performs antigenic stimulation of the macroorganism. In addition, a small amount of endotoxin can also be released by live gram-negative bacteria, which, given the large population of E. coli in the intestine, can create a sufficiently high concentration of endotoxin. Aim. The study of composition and biological activity of lipopolysaccharides of new E. coli strains, found in the human body. Methods. The objects of investigation were strains of Escherichia coli, isolated from healthy patients at the epidemiological center in Kharkiv. Lipopolysaccharides were extracted from dried cells by 45% phenol water solution at 65–68°С by Westphal and Jann method. The amount of carbohydrates was determined by phenol-sulfuric method. Carbohydrate content was determined in accordance to the calibration curve, which was built using glucose as a standard. The content of nucleic acids was determined by Spirin method, protein − by Lowry method. Serological activity of LPS was investigated by double immunodiffusion in agar using the method of Ouchterlony. Results. In all studied E. coli LPS (2884, 2890, 2892), glucose was dominant monosaccharide (40.5, 41.1, 67.3%, respectively). LPS also contained rhamnose (1.8, 22.9, 1.6%, respectively), ribose (3.5, 6.1, 3.6%, respectively) and galactose (4.1, 20.2, 18.3%, respectively). E. coli 2884 LPS also contained arabinose (1.0%) and mannose (44.8%), while E. coli strains 2890 and 2892 LPS contained heptose (9.7 and 7.8%, respectively). Lipid A composition was presented by fatty acids with a carbon chain length from C12 to C18. As the predominant components were 3-hydroxytetradecanoic (39.2–51.3%) as well as tetradecanoic (23.1–28.5%), dodecanoic (8.9–10.9%), hexadecanoic (4.3–7.2%) and octadecanoic (1.8–2.4%) acids. Unsaturated fatty acids: hexadecenoic (2.0–17.9%) and octadecenoic (3.4–4.2%) have been also identified. It was found that octadecanoic and octadecenoic acids were absent in the LPS of 2884 and 2892 strains, respectively. In SDS-PAAG electrophoresis, a bimodal distribution typical for S-forms of LPS was observed. The studied LPS were toxic and pyrogenic. Double immunodiffusion in agar by Ouchterlony revealed that the tested LPS exhibited an antigenic activity in the homologous system. In heterologous system E. coli 2892 LPS had cross reactivity with LPS of E. coli 2890 and М-17. Since the structure of the O-specific polysaccharide (OPS) of E. coli M-17 was established by us earlier, the results of serological reactions make it possible to suggest an analogy of the E. coli 2892 and 2890 OPS structures with that of E. coli М-17 and their belonging to the same serogroup. Conclusions. The study of the composition and biological activity of LPS of new strains of Escherichia coli 2884, 2890 and 2892, isolated from the body of almost healthy patients, expands our knowledge about the biological characteristics of the species.


1980 ◽  
Vol 28 (4) ◽  
pp. 1077-1081
Author(s):  
TSUTOMU MIMURA ◽  
HIROSHI TSUJIBO ◽  
NORIO MUTO ◽  
SATOMI OTSUKA ◽  
SHIGERU AONUMA

Fitoterapia ◽  
2020 ◽  
Vol 145 ◽  
pp. 104639
Author(s):  
Shijiao Zha ◽  
Kazuyoshi Kuwano ◽  
Tomohiro Shibahara ◽  
Fumito Ishibashi

Sign in / Sign up

Export Citation Format

Share Document