Beryllium natural background concentration and mobility: a reappraisal examining the case of high Be-bearing pyroclastic rocks

2012 ◽  
Vol 185 (1) ◽  
pp. 559-572 ◽  
Author(s):  
Giovanna Armiento ◽  
Fabio Bellatreccia ◽  
Carlo Cremisini ◽  
Giancarlo Della Ventura ◽  
Elisa Nardi ◽  
...  
2016 ◽  
Vol 2 (91) ◽  
pp. 17-21
Author(s):  
S. H. Korsun ◽  
N. I. Dovbash

The aim of the study was to establish changes in the physico-chemical and agrochemical characteristics of gray forest large-clay loamy soil, depending on the contamination of ecotopes by heavy metals. Methods. Field, laboratory, mathematical and statistical. Results. The results of the study of the soil of areas with an over-dimensioned content of heavy metals and the transformation of agrochemical characteristics of gray forest soil in the cultivation of corn for grain. It was established that under conditions of systematic application of mineral fertilizers in agrocenoses, an increase in the lead concentration to 100 mg/kg, cadmium to 2,0, zinc to 50 mg/kg in gray forest soil did not result in a decrease in the amount available forms of nitrogen, phosphorus, potassium by plants, compared with the natural background. Concentration of lead in the amount of 1000 mg/kg, cadmium – 20, zinc – 500 mg/kg marked an increase in exchange and hydrolytic acidity and loss of humus.


2020 ◽  
Author(s):  
Ariadne Argyraki ◽  
Konstantina Pyrgaki ◽  
Efstratios Kelepertzis ◽  
Fotini Botsou ◽  
Ifigeneia Megremi

<p>The definition of natural background concentration levels (NBLs) of geogenic trace metals in groundwater is a challenging issue, particularly in areas where anthropogenic activities are also present. The estimation of NBLs, in combination with environmental quality standards, in such areas is particularly important for the establishment of relevant groundwater threshold values. Over 100 groundwater samples were collected and analysed from four Cr(VI) impacted, alluvial groundwater bodies of central Greece during two consecutive hydrologic years. A common feature of the examined aquifers is the presence of weathered ultramafic rock material in the alluvial sediments. Most sampled boreholes (79 %) are used for irrigation, whereas 21 % of them are used for domestic drinking water supply. Hexavalent Cr concentrations in groundwater, ranging from below detection limit to 430 μg/L, have been attributed to both geogenic and anthropogenic factors. The scope of the present study is to estimate the NBL of Cr(VI) by using a classical statistical approach and a deterministic preselection method and test the comparability of results. In the statistical approach the distribution of samples versus Cr(VI) concentrations has been explored by using probability plots. In this way, the concentration variations within the examined groundwater bodies can be studied and the presence of sub-populations becomes evident by breaks in the slope. In the instance of the preselection method, the concentrations of a set of additional analyzed parameters in ground water, including major water ions and nitrate as well as dissolved oxygen, have been taken into account in order to categorize the samples into two groups of low and high anthropogenic influence, respectively. The comparability of the results derived by the two approaches are discussed in the context of EU Water Framework Directive.</p>


1988 ◽  
Vol 59 (02) ◽  
pp. 273-276 ◽  
Author(s):  
J Dawes ◽  
D A Pratt ◽  
M S Dewar ◽  
F E Preston

SummaryThrombospondin, a trimeric glycoprotein contained in the platelet α-granules, has been proposed as a marker of in vivo platelet activation. However, it is also synthesised by a range of other cells. The extraplatelet contribution to plasma levels of thrombospondin was therefore estimated by investigating the relationship between plasma thrombospondin levels and platelet count in samples from profoundly thrombocytopenic patients with marrow hypoplasia, using the platelet-specific α-granule protein β-thromboglobulin as control. Serum concentrations of both proteins were highly correlated with platelet count, but while plasma β-thromboglobulin levels and platelet count also correlated, there was no relationship between the number of platelets and thrombospondin concentrations in plasma. Serial sampling of patients recovering from bone marrow depression indicated that the plasma thrombospondin contributed by platelets is superimposed on a background concentration of at least 50 ng/ml probably derived from a non-platelet source, and plasma thrombospondin levels do not simply reflect platelet release.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander H. Frank ◽  
Robert van Geldern ◽  
Anssi Myrttinen ◽  
Martin Zimmer ◽  
Johannes A. C. Barth ◽  
...  

AbstractThe relevance of CO2 emissions from geological sources to the atmospheric carbon budget is becoming increasingly recognized. Although geogenic gas migration along faults and in volcanic zones is generally well studied, short-term dynamics of diffusive geogenic CO2 emissions are mostly unknown. While geogenic CO2 is considered a challenging threat for underground mining operations, mines provide an extraordinary opportunity to observe geogenic degassing and dynamics close to its source. Stable carbon isotope monitoring of CO2 allows partitioning geogenic from anthropogenic contributions. High temporal-resolution enables the recognition of temporal and interdependent dynamics, easily missed by discrete sampling. Here, data is presented from an active underground salt mine in central Germany, collected on-site utilizing a field-deployed laser isotope spectrometer. Throughout the 34-day measurement period, total CO2 concentrations varied between 805 ppmV (5th percentile) and 1370 ppmV (95th percentile). With a 400-ppm atmospheric background concentration, an isotope mixing model allows the separation of geogenic (16–27%) from highly dynamic anthropogenic combustion-related contributions (21–54%). The geogenic fraction is inversely correlated to established CO2 concentrations that were driven by anthropogenic CO2 emissions within the mine. The described approach is applicable to other environments, including different types of underground mines, natural caves, and soils.


Author(s):  
Benjamin A. Musa Bandowe ◽  
Nosir Shukurov ◽  
Sophia Leimer ◽  
Michael Kersten ◽  
Yosef Steinberger ◽  
...  

AbstractThe concentrations, composition patterns, transport and fate of PAHs in semi-arid and arid soils such as in Central Asia are not well known. Such knowledge is required to manage the risk posed by these toxic chemicals to humans and ecosystems in these regions. To fill this knowledge gap, we determined the concentrations of 21 parent PAHs, 4,5-methylenephenanthrene, 6 alkylated PAHs, and biphenyl in soils from 11 sampling locations (0–10, 10–20 cm soil depths) along a 20-km transect downwind from the Almalyk metal mining and metallurgical industrial complex (Almalyk MMC), Uzbekistan. The concentrations of Σ29 PAHs and Σ16 US-EPA PAHs were 41–2670 ng g−1 and 29–1940 ng g−1, respectively. The highest concentration of Σ29 PAHs occurred in the immediate vicinity of the copper smelting factory of the Almalyk MMC. The concentrations in topsoil decreased substantially to a value of ≤ 200 ng g−1 (considered as background concentration) at ≥ 2 km away from the factory. Low molecular weight PAHs dominated the PAH mixtures at less contaminated sites and high molecular weight PAHs at the most contaminated site. The concentration of Σ16 US-EPA PAHs did not exceed the precautionary values set by the soil quality guidelines of, e.g., Switzerland and Germany. Similarly, the benzo[a]pyrene equivalent concentration in soils near the Almalyk MMC did not exceed the value set by the Canadian guidelines for the protection of humans from carcinogenic PAHs in soils. Consequently, the cancer risk due to exposure to PAHs in these soils can be considered as low.


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 172
Author(s):  
Laura Fantozzi ◽  
Nicoletta Guerrieri ◽  
Giovanni Manca ◽  
Arianna Orrù ◽  
Laura Marziali

We present the first assessment of atmospheric pollution by mercury (Hg) in an industrialized area located in the Ossola Valley (Italian Central Alps), in close proximity to the Toce River. The study area suffers from a level of Hg contamination due to a Hg cell chlor-alkali plant operating from 1915 to the end of 2017. We measured gaseous elemental Hg (GEM) levels by means of a portable Hg analyzer during car surveys between autumn 2018 and summer 2020. Moreover, we assessed the long-term dispersion pattern of atmospheric Hg by analyzing the total Hg concentration in samples of lichens collected in the Ossola Valley. High values of GEM concentrations (1112 ng m−3) up to three orders of magnitude higher than the typical terrestrial background concentration in the northern hemisphere were measured in the proximity of the chlor-alkali plant. Hg concentrations in lichens ranged from 142 ng g−1 at sampling sites located north of the chlor-alkali plant to 624 ng g−1 in lichens collected south of the chlor-alkali plant. A north-south gradient of Hg accumulation in lichens along the Ossola Valley channel was observed, highlighting that the area located south of the chlor-alkali plant is more exposed to the dispersion of Hg emitted into the atmosphere from the industrial site. Long-term studies on Hg emission and dispersion in the Ossola Valley are needed to better assess potential impact on ecosystems and human health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rahman ◽  
N. C. Mondal ◽  
K. K. Tiwari

AbstractAn increased nitrate (NO3−) concentration in groundwater has been a rising issue on a global scale in recent years. Different consumption mechanisms clearly illustrate the adverse effects on human health. The goal of this present study is to assess the natural and anthropogenic NO3− concentrations in groundwater in a semi arid area of Rajasthan and its related risks to human health in the different groups of ages such as children, males, and females. We have found that most of the samples (n = 90) were influenced by anthropogenic activities. The background level of NO3− had been estimated as 7.2 mg/L using a probabilistic approach. About 93% of nitrate samples exceeded the background limit, while 28% of the samples were beyond the permissible limit of 45 mg/L as per the BIS limits. The results show that the oral exposure of nitrate was very high as compare to dermal contact. With regard to the non-carcinogenic health risk, the total Hazard Index (HITotal) values of groundwater nitrate were an average of 0.895 for males, 1.058 for females, and 1.214 for children. The nitrate health risk assessment shows that about 38%, 46%, and 49% of the samples constitute the non-carcinogenic health risk to males, females, and children, respectively. Children were found to be more prone to health risks due to the potential exposure to groundwater nitrate.


Sign in / Sign up

Export Citation Format

Share Document