Influence of Water Content on Mechanical Properties of Improved Clayey Soil Using Steel Slag

2012 ◽  
Vol 31 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Yan Liang ◽  
Wei Li ◽  
Xinghua Wang
Irriga ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 186-194
Author(s):  
Barbara Barreto Fernandes ◽  
Indiamara Marasca ◽  
Murilo Battistuzzi Martins ◽  
Jefferson Sandi ◽  
Kleber Pereira Lanças

REGRESSÃO QUADRÁTICA PARA TEORES DE ÁGUA EM FUNÇÃO DA COMPACTAÇÃO DO SOLO     Barbara Barreto Fernandes¹; Indiamara Marasca²; Murilo³ Battistuzzi Martins; Jefferson Sandi4 e Kleber Pereira Lanças5   1 Engenheira agrônoma, Rua Luis Carlos Da Silveira, 345, Tenis Clube, 19806-370, Assis – SP, Brasil. E-mail: [email protected] 2 Engenheira agrônoma, Fazenda Cachoeira do Montividiu – 75915-000, Montividiu – GO, Brasil. E-mail: [email protected] 3 Universidade Estadual de Mato Grosso do Sul – Unidade de Cassilândia. Rodovia MS 306 - km 6,4; 79540-000, Cassilândia, MS, Brasil. E-mail:  [email protected] 4 Universidade La Salle de Lucas do Rio Verde. Av. Universitária, 1000, Parque das Emas - 78455-000, Lucas do Rio Verde, MT, Brasil. E-mail: [email protected] 5 Departamento de Engenharia Rural na FCA/UNESP, Av. Universitária, 3780 - Altos do Paraíso, 18610-034, Botucatu, SP, Brasil. E-mail: [email protected]     1 RESUMO   O trabalho teve por objetivo avaliar a influência do teor de água na avaliação de resistência mecânica a penetração do solo, medida através do índice de cone. O experimento foi realizado na UNESP/FCA, Botucatu-SP, sendo selecionadas duas classes de solo: o Nitossolo Vermelho distroférrico e o Latossolo Vermelho. Utilizou-se o delineamento inteiramente casualizado, com os seguintes tratamentos de compactação: T0 = 0; T1 = 1; T2 = 2; T3 = 3; T4=5 e T5 = 10 passadas consecutivas de um trator agrícola. Utilizou-se um penetrômetro hidráulico-eletrônico para a amostragem da resistência mecânica do solo à penetração nas camadas de: 0,00 - 0,10; 0,10 - 0,20; 0,20 - 0,30; 0,30 - 0,40 m em quatro condições de teor de água. Com o aumento do tráfego, maior foi a compactação. Porém para o solo argiloso, a partir de uma passada do trator, os valores de resistência à penetração tiveram pouco aumento, não diferindo estatisticamente para a camada mais superficial (0-0,20 m) e para a camada de 0,20-0,40 m a partir de duas passadas. Para o solo de textura média, este comportamento foi observado a partir de uma passada para a camada mais superficial (0-0,20 m) e de cinco passadas para a camada de 0,20-0,40m.   Palavras-chave: resistência do solo, umidade, agregação.     FERNANDES, B. B.; MARASCA, I.; MARTINS, M. B.; SANDI, J.; LANÇAS, K. P. QUADRACTIC REGRESSION FOR WATER CONTENTS IN THE FUNCTION OF SOIL COMPACTION     2 ABSTRACT   The objective of this work was to evaluate the influence of water content in the evaluation of mechanical resistance to soil penetration, measured through the cone index. The experiment was conducted at UNESP/FCA, Botucatu - SP, being selected two classes of soil: a Nitossolo Vermelho distroférrico and a Latosolo Vermelho. A completely randomized design was used, with the following compaction treatments: T0 = 0; T1 = 1; T2 = 2; T3 = 3; T4 = 5 and T5 = 10 consecutive passes of an agricultural tractor. A hydraulic-electronic penetrometer was used to sample the mechanical resistance of the soil to penetrate the layers; 0.00 – 0.10; 0.10 - 0.20; 0.20 - 0.30; 0.30 - 0.40 m in four water content conditions. With the increase in traffic, greater was the compression. However, for the clayey soil, from a tractor pass, the penetration resistance values ​​had a small increase, not differing statistically for the most superficial layer (0 - 0.20m) and for the 0.20 - 0.40 m layer from two passes. For medium textured soil, this behavior was observed from one pass to the most superficial layer (0 - 0.20 m) and five passes to the 0.20 - 0.40 m layer.   Keywords: soil resistance; moisture; aggregation.      


2016 ◽  
Vol 17 (3) ◽  
pp. 1057-1066 ◽  
Author(s):  
Kenjiro Yazawa ◽  
Kana Ishida ◽  
Hiroyasu Masunaga ◽  
Takaaki Hikima ◽  
Keiji Numata

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
James Robert Wingham ◽  
Maha Omran ◽  
Joanna Shepherd ◽  
Candice Majewski

Purpose The use of laser sintering (LS) in the medical sector has increased dramatically in recent years. With the move towards direct use of these parts in clinical applications, there is a greater need to understand the effects of standard processes on the part properties. The purpose of this study is to determine the effect that steam sterilisation has on the mechanical properties of LS polyamide 12 parts. Design/methodology/approach The research presented here focusses on the effect of a single steam sterilisation cycle on the mechanical properties of polyamide 12 parts manufactured using LS. The influence of water content on the properties was investigated, with additional drying steps trialled to establish the potential to reverse any changes observed and to determine their root cause. Findings The results show that steam sterilisation has a significant effect on the mechanical properties of LS polyamide 12 parts, with a 39% reduction in elastic modulus, a 13% decrease in ultimate tensile strength and a 64% increase in the elongation at break. These properties were also all found to correlate with the water content, suggesting that this was the cause of the difference. The original properties of the parts were able to be recovered after oven drying. Practical implications These results show that with an additional drying step, LS polyamide 12 parts can be steam sterilised with no effect on the mechanical properties. Originality/value This is believed to be the first investigation into the effects of steam sterilisation in isolation on LS polyamide 12 parts, the first instance of drying parts to recover mechanical properties and the first instance of multiple water content measurements being directly linked to the mechanical properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Meichang Zhang ◽  
Rongshan Nie

The presence of water is one of the most important factors in coal mining, and it has a dual influence on the mechanical behavior of rock. To study the influence of water content on the mechanical properties of coal under complicated stress conditions, dry coal specimens and wet coal specimens with water contents of 1.8% and 3.6% were conducted by uniaxial and conventional triaxial compression tests. The relations between the uniaxial compressive strength, deformation, and water content were observed. The reductions in the strength and elastic modulus under different confining pressures were obtained. The mechanical properties of coal specimens with different water contents under triaxial compression were studied. The influences of water content on the microstructure, clay minerals, internal friction angle, and cohesive force of coal were discussed. The results show that the strengths and elastic moduli of wet specimens are clearly lower than those of dry specimens under different confining pressures. The water content has a significant influence on the postfailure mechanical behavior of coal. The loss rates of strength and elastic modulus decrease with increasing confining pressure. The water content has almost no effect on the internal friction angle, while the cohesive force of the saturated specimens is 36.5% lower than that of the dry specimens. The results can provide a reference for inhibiting the occurrence of disasters during coal mining and exploiting coal efficiently.


Author(s):  
Kristýna Bláhová ◽  
Lenka Ševelová ◽  
Pavla Pilařová

Shear strength of soils is highly affected by moisture conditions (i.e. water content), especially if the soil contains clay materials. Usually the laboratory specimen, which are used to determine shear strength of soil are prepared at water content and dry density same as in the field conditions, without respect to the fact, that the conditions in the future might not remain the same. For the purpose of this study soil specimen were compacted and the optimum moisture content was identified. After compaction soil was tested at the dry side of optimum water content at w = 9 %, 10 % and 11 %. Parameters of shear strength were obtained and used for stability analysis with software GEOSLOPE/W 2012. According to referenced literature, it was expected for the shear strength of the soil to decrease with increasing water content. This hypothesis was not proven for clayey soil from Brno region. Development of values of friction angle and cohesion exhibited anomalous behaviour and such development was found also for values of Factor of safety (FOS) obtained from stability analyses. Results proved the necessity of taking moisture conditions into account, when processing stability analyses, in order to achieve reliable and safe constructions.


2016 ◽  
Vol 49 (8) ◽  
pp. 3009-3025 ◽  
Author(s):  
Zilong Zhou ◽  
Xin Cai ◽  
Wenzhuo Cao ◽  
Xibing Li ◽  
Cheng Xiong

2017 ◽  
Vol 82 (732) ◽  
pp. 299-308
Author(s):  
Chihiro KAKU ◽  
Yuji HASEMI ◽  
Daisuke KAMIKAWA ◽  
Tatsuro SUZUKI ◽  
Noboru YASUI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document