scholarly journals Biomarkers for the diagnosis and management of heart failure

Author(s):  
Vincenzo Castiglione ◽  
Alberto Aimo ◽  
Giuseppe Vergaro ◽  
Luigi Saccaro ◽  
Claudio Passino ◽  
...  

AbstractHeart failure (HF) is a significant cause of morbidity and mortality worldwide. Circulating biomarkers reflecting pathophysiological pathways involved in HF development and progression may assist clinicians in early diagnosis and management of HF patients. Natriuretic peptides (NPs) are cardioprotective hormones released by cardiomyocytes in response to pressure or volume overload. The roles of B-type NP (BNP) and N-terminal pro-B-type NP (NT-proBNP) for diagnosis and risk stratification in HF have been extensively demonstrated, and these biomarkers are emerging tools for population screening and as guides to the start of treatment in subclinical HF. On the contrary, conflicting evidence exists on the role of NPs as a guide to HF therapy. Among the other biomarkers, high-sensitivity troponins and soluble suppression of tumorigenesis-2 are the most promising biomarkers for risk stratification, with independent value to NPs. Other biomarkers evaluated as predictors of adverse outcome are galectin-3, growth differentiation factor 15, mid-regional pro-adrenomedullin, and makers of renal dysfunction. Multi-marker scores and genomic, transcriptomic, proteomic, and metabolomic analyses could further refine HF management.

2020 ◽  
Author(s):  
Eugene S J Tan ◽  
Siew-Pang Chan ◽  
Oi-Wah Liew ◽  
Jenny P C Chong ◽  
Gerard K T Leong ◽  
...  

Abstract Background Consideration of circulating biomarkers for risk stratification in heart failure (HF) is recommended, but the influence of atrial fibrillation (AF) on prognostic performance of many markers is unclear. We investigated the influence of AF on the prognostic performance of circulating biomarkers in HF. Methods N-terminal pro-B-type natriuretic peptide (NT-proBNP), mid-regional-pro-atrial natriuretic peptide, C-type natriuretic peptide (CNP), NT-proCNP, high-sensitivity troponin-T, high-sensitivity troponin-I, mid-regional-propeptide adrenomedullin, co-peptin, growth differentiation factor-15, soluble Suppressor of Tumorigenicitiy (sST2), galectin-3, and procalcitonin plasma concentrations were measured in a prospective, multicenter study of adults with HF. AF was defined as a previous history of AF, and/or presence of AF/flutter on baseline 12-lead electrocardiogram. The primary outcome was the composite of HF-hospitalization or all-cause mortality at 2 years. Results Among 1099 patients (age 62 ± 12years, 28% female), 261(24%) patients had AF. Above-median concentrations of all biomarkers were independently associated with increased risk of the primary outcome. Significant interactions with AF were detected for galectin-3 and sST2. In considering NT-proBNP for additive risk stratification, sST2 (adjusted hazard ratio [AHR]1.85, 95%confidence interval [C.I.] 1.17-2.91) and galectin-3 (AHR1.85, 95%C.I. 1.09-2.45) were independently associated with increased primary outcome only in the presence of AF. The prognostic performance of sST2 was also stronger in AF for all-cause mortality (AF: AHR2.82, 95%C.I. 1.26-6.21; non-AF: AHR1.78, 95% C.I. 1.14-2.76 without AF), while galectin-3 predicted HF-hospitalization only in AF (AHR1.64, 95%C.I. 1.03-2.62). Conclusions AF modified the prognostic utility of selected guideline-endorsed HF-biomarkers. Application of markers for prognostic purposes in HF requires consideration of the presence or absence of AF. Clinical trial registration ACTRN12610000374066


2010 ◽  
Vol 6 (2) ◽  
pp. 33 ◽  
Author(s):  
Christopher R deFilippi ◽  
G Michael Felker ◽  
◽  

For many with heart failure, including the elderly and those with a preserved ejection fraction, both risk stratification and treatment are challenging. For these large populations and others there is increasing recognition of the role of cardiac fibrosis in the pathophysiology of heart failure. Galectin-3 is a novel biomarker of fibrosis and cardiac remodelling that represents an intriguing link between inflammation and fibrosis. In this article we review the biology of galectin-3, recent clinical research and its application in the management of heart failure patients.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1306
Author(s):  
Filippo Pirrotta ◽  
Benedetto Mazza ◽  
Luigi Gennari ◽  
Alberto Palazzuoli

Congestion related to cardiac pressure and/or volume overload plays a central role in the pathophysiology, presentation, and prognosis of heart failure (HF). Most HF exacerbations are related to a progressive rise in cardiac filling pressures that precipitate pulmonary congestion and symptomatic decompensation. Furthermore, persistent symptoms and signs of congestion at discharge or among outpatients are strong predictors of an adverse outcome. Pulmonary congestion is also one of the most important diagnostic and therapeutic targets in chronic heart failure. The aim of this review is to analyze the importance of clinical, instrumental, and biochemical evaluation of congestion in HF by describing old and new tools. Lung ultrasonography (LUS) is an emerging method to assess pulmonary congestion. Accordingly, we describe the additive prognostic role of chest ultrasound with respect to traditional clinical and X-ray assessment in acute and chronic HF setting.


2020 ◽  
Vol 6 (4) ◽  
pp. 00625-2020
Author(s):  
Matthias Ebner ◽  
Niklas Guddat ◽  
Karsten Keller ◽  
Marie Christine Merten ◽  
Markus H. Lerchbaumer ◽  
...  

While numerous studies have confirmed the prognostic role of high-sensitivity troponin T (hsTnT) in pulmonary embolism (PE), high-sensitivity troponin I (hsTnI) is inappropriately studied. This study aimed to investigate the prognostic relevance of hsTnI in normotensive PE, establish the optimal cut-off value for risk stratification and to compare the prognostic performances of hsTnI and hsTnT.Based on data from 459 consecutive PE patients enrolled in a single-centre registry, receiver operating characteristic analysis was used to identify an optimal hsTnI cut-off value for prediction of in-hospital adverse outcomes (PE-related death, cardiopulmonary resuscitation or vasopressor treatment) and all-cause mortality.Patients who suffered an in-hospital adverse outcome (4.8%) had higher hsTnI concentrations compared with those with a favourable clinical course (57 (interquartile range (IQR) 22–197) versus 15 (IQR 10–86) pg·mL−1, p=0.03). A hsTnI cut-off value of 16 ng·mL−1 provided optimal prognostic performance and predicted in-hospital adverse outcomes (OR 6.5, 95% CI 1.9–22.4) and all-cause mortality (OR 3.7, 95% CI 1.0–13.3). Between female and male patients, no relevant differences in hsTnI concentrations (17 (IQR 10–97) versus 17 (IQR 10–92) pg·mL−1, p=0.79) or optimised cut-off values were observed. Risk stratification according to the 2019 European Society of Cardiology algorithm revealed no differences if calculated based on either hsTnI or hsTnT (p=0.68).Our findings confirm the prognostic role of hsTnI in normotensive PE. HsTnI concentrations >16 pg·mL−1 predicted in-hospital adverse outcome and all-cause mortality; sex-specific cut-off values do not seem necessary. Importantly, our results suggest that hsTnI and hsTnT can be used interchangeably for risk stratification.


2020 ◽  
Vol 134 (1) ◽  
pp. 71-72
Author(s):  
Naseer Ahmed ◽  
Masooma Naseem ◽  
Javeria Farooq

Abstract Recently, we have read with great interest the article published by Ibarrola et al. (Clin. Sci. (Lond.) (2018) 132, 1471–1485), which used proteomics and immunodetection methods to show that Galectin-3 (Gal-3) down-regulated the antioxidant peroxiredoxin-4 (Prx-4) in cardiac fibroblasts. Authors concluded that ‘antioxidant activity of Prx-4 had been identified as a protein down-regulated by Gal-3. Moreover, Gal-3 induced a decrease in total antioxidant capacity which resulted in a consequent increase in peroxide levels and oxidative stress markers in cardiac fibroblasts.’ We would like to point out some results stated in the article that need further investigation and more detailed discussion to clarify certain factors involved in the protective role of Prx-4 in heart failure.


2021 ◽  
Vol 11 (10) ◽  
pp. 4397
Author(s):  
Michael Lichtenauer ◽  
Peter Jirak ◽  
Vera Paar ◽  
Brigitte Sipos ◽  
Kristen Kopp ◽  
...  

Heart failure (HF) and type 2 diabetes mellitus (T2DM) have a synergistic effect on cardiovascular (CV) morbidity and mortality in patients with established CV disease (CVD). The aim of this review is to summarize the knowledge regarding the discriminative abilities of conventional and novel biomarkers in T2DM patients with established HF or at higher risk of developing HF. While conventional biomarkers, such as natriuretic peptides and high-sensitivity troponins demonstrate high predictive ability in HF with reduced ejection fraction (HFrEF), this is not the case for HF with preserved ejection fraction (HFpEF). HFpEF is a heterogeneous disease with a high variability of CVD and conventional risk factors including T2DM, hypertension, renal disease, older age, and female sex; therefore, the extrapolation of predictive abilities of traditional biomarkers on this population is constrained. New biomarker-based approaches are disputed to be sufficient for improving risk stratification and the prediction of poor clinical outcomes in patients with HFpEF. Novel biomarkers of biomechanical stress, fibrosis, inflammation, oxidative stress, and collagen turn-over have shown potential benefits in determining prognosis in T2DM patients with HF regardless of natriuretic peptides, but their role in point-to-care and in routine practice requires elucidation in large clinical trials.


2016 ◽  
Vol 62 (2) ◽  
pp. 360-366 ◽  
Author(s):  
Emily I Schindler ◽  
Jeffrey J Szymanski ◽  
Karl G Hock ◽  
Edward M Geltman ◽  
Mitchell G Scott

Abstract BACKGROUND Galectin-3 (Gal-3) has been suggested as a prognostic biomarker in heart failure (HF) patients that may better reflect disease progression than traditional markers, including B-type natriuretic peptide (BNP) and cardiac troponins. To fully establish the utility of any biomarker in HF, its biologic variability must be characterized. METHODS To assess biologic variability, 59 patients were prospectively recruited, including 23 male and 16 female patients with stable HF and 10 male and 10 female healthy individuals. Gal-3, BNP, and high-sensitivity cardiac troponin I (hs-cTnI) were assayed at 5 time points within a 3-week period to assess short-term biologic variability. Long-term (3-month) biologic variability was assessed with samples collected at enrollment and after 4, 8, and 12 weeks. RESULTS Among healthy individuals, mean short-term biologic variability, expressed as intraindividual CV (CVI), was 4.5% for Gal-3, 29.0% for BNP, and 14.5% for hs-cTnI; long-term biologic variability was 5.5% for Gal-3, 34.7% for BNP, and 14.7% for hs-cTnI. In stable HF patients, mean short-term biologic variability was 7.1% for Gal-3, 22.5% for BNP, and 8.5% for hs-cTnI, and mean long-term biologic variability was 7.7% for Gal-3, 27.6% for BNP, and 9.6% for hs-cTnI. CONCLUSIONS The finding that Gal-3 has minimal intraindividual biological variability adds to its potential as a useful biomarker in HF patients.


2019 ◽  
Vol 46 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Xiao Zhong ◽  
Xiaoqian Qian ◽  
Guangping Chen ◽  
Xiang Song

Sign in / Sign up

Export Citation Format

Share Document