Titanium dioxide/quaternary phosphonium salts/polyacrylonitrile composite nanofibrous membranes with high antibacterial properties and ultraviolet resistance efficiency

2019 ◽  
Vol 54 (20) ◽  
pp. 13322-13333 ◽  
Author(s):  
Xing Zhong ◽  
Rong Li ◽  
Zehong Wang ◽  
Wei Wang ◽  
Dan Yu

2021 ◽  
pp. 152808372110117
Author(s):  
Sommai Pivsa-Art ◽  
Komson Sunyikhan ◽  
Weraporn Pivsa-Art

Recycled poly(ethylene terephthalate) (RPET) multifilament yarns are used in carpet manufacturing as a way to reduce plastic waste. The conventional RPET carpet is however susceptible to bacterial accumulation. As a result, this research experimentally doped RPET with nano-structure titanium dioxide (nano-TiO2) to produce RPET/nano-TiO2 bicomponent multifilament yarns with antibacterial property. The experimental multifilament yarn structure consisted of two parts: neat RPET core and RPET/nano-TiO2 shell. The nano-TiO2 content in the shell was varied between 1 and 3 wt% and the core/shell (C/S) ratios between 90/10, 70/30, and 50/50 w/w. The effects of C/S ratio and nano-TiO2 content on the mechanical and antibacterial properties of bicomponent multifilament yarns were determined. The experimental results indicated that the C/S ratio had no effect on the tenacity and elongation at break. Meanwhile, the tenacity and elongation at break of bicomponent fibers increased with nano-TiO2 content in the shell. The TiO2-doped RPET bicomponent yarns effectively inhibited the growth of Escherichia coli and Staphylococcus aureus. The 90/10 bicomponent multifilament fiber with 3 wt% TiO2 achieved the highest antibacterial activity. The very high antibacterial activity was attributable to greater deposition of nano-TiO2 particles near and on the shell surface.



2014 ◽  
Vol 45 (7) ◽  
pp. 653-665 ◽  
Author(s):  
Oksana Aganova ◽  
Leisan Galiullina ◽  
Albert Aganov ◽  
Yurii Shtyrlin ◽  
Mikhail Pugachev ◽  
...  


2007 ◽  
Vol 11 (1) ◽  
pp. 107-126 ◽  
Author(s):  
Gyorgy Keglevich ◽  
Zoltan Baan ◽  
Istvan Hermecz ◽  
Tibor Novak ◽  
Irina Odinets


2014 ◽  
Vol 936 ◽  
pp. 1017-1021
Author(s):  
Pan Chen ◽  
Jin Cheng Wang

Na-MMT was modified with quaternary phosphonium salts, tetramethylolphosphonium chloride (THPC), via ion-exchange reactions, in acid conditions. Different factors such as reaction time , reaction temperature, the types of solvent, and CEC ratios, were investigated using orthogonal test. Results showed that the best combination of these four factors were A1B3C1D1, that is, the type of the solvent was acetone and water (1:1), reaction time was 3h, CEC ratio was 1:1, and the reaction temperature was 80°C.



2021 ◽  
Vol 10 (1) ◽  
pp. 478-487
Author(s):  
Yu Liu ◽  
Heliang Wang ◽  
Xiwei Guo ◽  
Mingyuan Yi ◽  
Lihong Wan ◽  
...  

Abstract With the emerging of sustainability, the fabrication of effective and eco-friendly agents for rubber industry has attracted extensive attention. In this study, a novel and nontoxic titanium dioxide-based vulcanization accelerator (xanthate-modified nanotitanium dioxide (TDSX)) with excellent antibacterial performance, for the first time, was synthesized under the catalyst of ceric ammonium nitrate. Notably, the thermal stability of xanthate was greatly enhanced after being grafted on titanium dioxide (TiO2) nanoparticles, in which the activation energy was increased from 6.4 to 92.5 kJ/mol, enabling the obtained TDSX with multiple functions, mainly consisting of fabulous vulcanization-promoting effects, reinforcing effects, antibacterial properties, and anti-ultraviolet aging effects for natural rubber (NR). Simultaneously, the TDSX can be effectively and uniformly dispersed in the rubber matrix along with the developed interface interaction between TDSX particles and rubber matrix. Compared to the traditional accelerators 2-mercaptobenzothiazole (M) system, the tensile strength and the tearing strength of NR/TDSX was improved by 26.3 and 40.4%, respectively. Potentially, our work for preparing green vulcanization accelerator can provide a new design strategy for multifunctional high performance elastomer materials.



2003 ◽  
Vol 58 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Günter Paulus Schiemenz ◽  
Christian Näther ◽  
Simon Pörksen

Abstract The 31P NMR data of non-quaternary (8-dimethylamino-naphth-1-yl)phosphonium salts, with emphasis on the 1J(31P, 1H) coupling constants, where scrutinized for their potential to yield information about N→P dative interactions. As for δ (29Si) and 1J(29Si, 1H) in the isosteric silanes, the data do not permit conclusions in favour of such interactions. 1J(31P, 1H) of bis(8-dimethylaminonaphth- 1-yl)phosphine in conjunction with the distances d(N···P) invalidates the basic assumption on which the claim of dative N→P/Si bonding in such phosphorus and silicon compounds rests, viz. that N···P/Si distances of ca. 270 pm are evidence for P/Si-hypercoordination. No evidence for hydrogen bonds N···H-P was found.





2019 ◽  
Vol 21 (14) ◽  
pp. 5733-5736 ◽  
Author(s):  
Lin Chen ◽  
Ben-Xian Xiao ◽  
Wei Du ◽  
Ying-Chun Chen


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1078 ◽  
Author(s):  
Silvia Bittner Fialová ◽  
Martin Kello ◽  
Matúš Čoma ◽  
Lívia Slobodníková ◽  
Eva Drobná ◽  
...  

On its own, rosmarinic acid possesses multiple biological activities such as anti-inflammatory, antimicrobial, cardioprotective and antitumor properties, and these are the consequence of its ROS scavenging and inhibitory effect on inflammation. In this study, two quaternary phosphonium salts of rosmarinic acid were prepared for the purpose of increasing its penetration into biological systems with the aim of improving its antimicrobial, antifungal, antiprotozoal and antitumor activity. The synthetized molecules, the triphenylphosphonium and tricyclohexylphosphonium salts of rosmarinic acid, exhibited significantly stronger inhibitory effects on the growth of HCT116 cells with IC50 values of 7.28 or 8.13 μM in comparison to the initial substance, rosmarinic acid (>300 μM). For the synthesized derivatives, we detected a greater than three-fold increase of activity against Acanthamoeba quina, and a greater than eight-fold increase of activity against A. lugdunensis in comparison to rosmarinic acid. Furthermore, we recorded significantly higher antimicrobial activity of the synthetized derivatives when compared to rosmarinic acid itself. Both synthetized quaternary phosphonium salts of rosmarinic acid appear to be promising antitumor and antimicrobial agents, as well as impressive molecules for further research.



Sign in / Sign up

Export Citation Format

Share Document