Influence of Titanium Dioxide Particles on the Filtration of 1,4-Dioxane and Antibacterial Properties of Electrospun Cellulose Acetate and Polyvinylidene Fluoride Nanofibrous Membranes

Author(s):  
T. Senthil Muthu Kumar ◽  
K. Senthilkumar ◽  
Mantiya Ratanit ◽  
N. Rajini ◽  
Noppavan Chanunpanich ◽  
...  
Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 289
Author(s):  
Kajeephan Samree ◽  
Pen-umpai Srithai ◽  
Panaya Kotchaplai ◽  
Pumis Thuptimdang ◽  
Pisut Painmanakul ◽  
...  

This work investigates polyvinylidene fluoride (PVDF) membrane modification to enhance its hydrophilicity and antibacterial properties. PVDF membranes were coated with nanoparticles of titanium dioxide (TiO2-NP) and silver (AgNP) at different concentrations and coating times and characterized for their porosity, morphology, chemical functional groups and composition changes. The results showed the successfully modified PVDF membranes containing TiO2-NP and AgNP on their surfaces. When the coating time was increased from 8 to 24 h, the compositions of Ti and Ag of the modified membranes were increased from 1.39 ± 0.13 to 4.29 ± 0.16 and from 1.03 ± 0.07 to 3.62 ± 0.08, respectively. The water contact angle of the membranes was decreased with increasing the coating time and TiO2-NP/AgNP ratio. The surface roughness and permeate fluxes of coated membranes were increased due to increased hydrophilicity. Antimicrobial and antifouling properties were investigated by the reduction of Escherichia coli cells and the inhibition of biofilm formation on the membrane surface, respectively. Compared with that of the original PVDF membrane, the modified membranes exhibited antibacterial efficiency up to 94% against E. coli cells and inhibition up to 65% of the biofilm mass reduction. The findings showed hydrophilic improvement and an antimicrobial property for possible wastewater treatment without facing the eminent problem of biofouling.


2021 ◽  
Author(s):  
Ahmed Esmail Shalan ◽  
M. Afifi ◽  
M.M. El-Desoky ◽  
M.k Ahmed

Cellulose acetate nanofiber membranes containing hydroxyapatite co-doped with Ag/Fe were efficaciously attained through the electrospinning technique. Different molar ratio compositions of hydroxyapatite co-doped with Ag/Fe in the structure of the...


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1601
Author(s):  
Jorge Contreras-Martínez ◽  
Carmen García-Payo ◽  
Mohamed Khayet

As a consequence of the increase in reverse osmosis (RO) desalination plants, the number of discarded RO modules for 2020 was estimated to be 14.8 million annually. Currently, these discarded modules are disposed of in nearby landfills generating high volumes of waste. In order to extend their useful life, in this research study, we propose recycling and reusing the internal components of the discarded RO modules, membranes and spacers, in membrane engineering for membrane distillation (MD) technology. After passive cleaning with a sodium hypochlorite aqueous solution, these recycled components were reused as support for polyvinylidene fluoride nanofibrous membranes prepared by electrospinning technique. The prepared membranes were characterized by different techniques and, finally, tested in desalination of high saline solutions (brines) by direct contact membrane distillation (DCMD). The effect of the electrospinning time, which is the same as the thickness of the nanofibrous layer, was studied in order to optimize the permeate flux together with the salt rejection factor and to obtain robust membranes with stable DCMD desalination performance. When the recycled RO membrane or the permeate spacer were used as supports with 60 min electrospinning time, good permeate fluxes were achieved, 43.2 and 18.1 kg m−2 h−1, respectively; with very high salt rejection factors, greater than 99.99%. These results are reasonably competitive compared to other supported and unsupported MD nanofibrous membranes. In contrast, when using the feed spacer as support, inhomogeneous structures were observed on the electrospun nanofibrous layer due to the special characteristics of this spacer resulting in low salt rejection factors and mechanical properties of the electrospun nanofibrous membrane.


2021 ◽  
pp. 152808372110117
Author(s):  
Sommai Pivsa-Art ◽  
Komson Sunyikhan ◽  
Weraporn Pivsa-Art

Recycled poly(ethylene terephthalate) (RPET) multifilament yarns are used in carpet manufacturing as a way to reduce plastic waste. The conventional RPET carpet is however susceptible to bacterial accumulation. As a result, this research experimentally doped RPET with nano-structure titanium dioxide (nano-TiO2) to produce RPET/nano-TiO2 bicomponent multifilament yarns with antibacterial property. The experimental multifilament yarn structure consisted of two parts: neat RPET core and RPET/nano-TiO2 shell. The nano-TiO2 content in the shell was varied between 1 and 3 wt% and the core/shell (C/S) ratios between 90/10, 70/30, and 50/50 w/w. The effects of C/S ratio and nano-TiO2 content on the mechanical and antibacterial properties of bicomponent multifilament yarns were determined. The experimental results indicated that the C/S ratio had no effect on the tenacity and elongation at break. Meanwhile, the tenacity and elongation at break of bicomponent fibers increased with nano-TiO2 content in the shell. The TiO2-doped RPET bicomponent yarns effectively inhibited the growth of Escherichia coli and Staphylococcus aureus. The 90/10 bicomponent multifilament fiber with 3 wt% TiO2 achieved the highest antibacterial activity. The very high antibacterial activity was attributable to greater deposition of nano-TiO2 particles near and on the shell surface.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1411
Author(s):  
Mujahid Mehdi ◽  
Huihui Qiu ◽  
Bing Dai ◽  
Raja Fahad Qureshi ◽  
Sadam Hussain ◽  
...  

Fiber based antibacterial materials have gained an enormous attraction for the researchers in these days. In this study, a novel Sericin Encapsulated Silver Nanoclusters (sericin-AgNCs) were synthesized through single pot and green synthesis route. Subsequently these sericin-AgNCs were incorporated into ultrafine electrospun cellulose acetate (CA) fibers for assessing the antibacterial performance. The physicochemical properties of sericin-AgNCs/CA composite fibers were investigated by transmission electron microscopy (TEM), field emission electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and wide X-ray diffraction (XRD). The antibacterial properties of sericin-AgNCs/CA composite fibers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were systematically evaluated. The results showed that sericin-AgNCs incorporated in ultrafine CA fibers have played a vital role for antibacterial activity. An amount of 0.17 mg/mL sericin-AgNCs to CA fibers showed more than 90% results and elevated upto >99.9% with 1.7 mg/mL of sericin-AgNCs against E. coli. The study indicated that sericin-AgNCs/CA composite confirms an enhanced antibacterial efficiency, which could be used as a promising antibacterial product.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 411
Author(s):  
Irena Zizovic ◽  
Marcin Tyrka ◽  
Konrad Matyja ◽  
Ivana Moric ◽  
Lidija Senerovic ◽  
...  

This study investigates the modification of commercial cellulose acetate microfiltration membranes by supercritical solvent impregnation with thymol to provide them with antibacterial properties. The impregnation process was conducted in a batch mode, and the effect of pressure and processing time on thymol loading was followed. The impact of the modification on the membrane’s microstructure was analyzed using scanning electron and ion-beam microscopy, and membranes’ functionality was tested in a cross-flow filtration system. The antibiofilm properties of the obtained materials were studied against Staphyloccocus aureus and Pseudomonas aeruginosa, while membranes’ blocking in contact with bacteria was examined for S. aureus and Escherichia coli. The results revealed a fast impregnation process with high thymol loadings achievable after just 0.5 h at 15 MPa and 20 MPa. The presence of 20% of thymol provided strong antibiofilm properties against the tested strains without affecting the membrane’s functionality. The study showed that these strong antibacterial properties could be implemented to the commercial membranes’ defined polymeric structure in a short and environmentally friendly process.


RSC Advances ◽  
2015 ◽  
Vol 5 (19) ◽  
pp. 14147-14155 ◽  
Author(s):  
A. Moslehyani ◽  
A. F. Ismail ◽  
M. H. D. Othman ◽  
T. Matsuura

This paper focuses on the potential of a novel flat sheet nanocomposite titanium dioxide (TiO2)-halloysite nanotubes (HNTs)/polyvinylidene fluoride (PVDF) membrane as a photocatalytic separator in the photocatalytic membrane reactor (PMR).


2007 ◽  
Vol 18 (8) ◽  
pp. 1462-1472 ◽  
Author(s):  
Andrea A. Hoffmann ◽  
Silvio L. P. Dias ◽  
Edilson V. Benvenutti ◽  
Eder C. Lima ◽  
Flávio A. Pavan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document