scholarly journals Fabrication and characterization of microstructure-controllable COL-HA-PVA hydrogels for cartilage repair

Author(s):  
Jie Xie ◽  
Wu Wang ◽  
Ruibo Zhao ◽  
Wei Lu ◽  
Liang chen ◽  
...  

AbstractPolyvinyl alcohol (PVA) hydrogel has gained interest in cartilage repair because of its highly swollen, porosity, and viscoelastic properties. However, PVA has some deficiencies, such as its poor biocompatibility and microstructure. This research aimed to design novel hydroxyapatite (HA)-collagen (COL)-PVA hydrogels. COL was added to improve cell biocompatibility, and the microstructure of the hydrogels was controlled by fused deposition modeling (FDM). The feasibility of the COL-HA-PVA hydrogels in cartilage repair was evaluated by in vitro and in vivo experiments. The scanning electron microscopy results showed that the hybrid hydrogels had interconnected macropore structures that contained a COL reticular scaffold. The diameter of the macropore was 1.08–1.85 mm, which corresponds to the diameter of the denatured PVA column. The chondrocytes were then seeded in hydrogels to assess the cell viability and formation of the cartilage matrix. The in vitro results revealed excellent cellular biocompatibility. Osteochondral defects (8 mm in diameter and 8 mm in depth) were created in the femoral trochlear of goats, and the defects were implanted with cell-seeded hydrogels, cell-free hydrogels, or a blank control. The in vivo results showed that the COL-HA-PVA hydrogels effectively repaired cartilage defects, especially the conditions inoculated with chondrocyte in advance. This research suggests that the COL-HA-PVA hydrogels have promising application in cartilage repair.

MRS Advances ◽  
2018 ◽  
Vol 3 (40) ◽  
pp. 2373-2378 ◽  
Author(s):  
Sandra E. Nájera ◽  
Monica Michel ◽  
Nam-Soo Kim

ABSTRACTPolymer composites of Polylactic acid (PLA) and poly-ε-caprolactone (PCL), containing small amounts of titanium oxide (TiO2) were developed for biomedical applications. These composite materials were prepared, and then printed using Fused Deposition Modeling (FDM). 3D printed structures were characterized to determine their mechanical properties and biocompatibility. DSC analysis yielded useful information regarding the immiscibility of the different polymers, and it was observed that the particles of TiO2 improved the stability of the polymers. The ultimate tensile strength and the fracture strain increased by adding TiO2 as a filler, resulting in values of approximately 45 MPa and 5.5 % elongation. The printed composites show excellent in vitro biocompatibility including cell proliferation and adhesion, and are therefore promising candidates to be used in the biomedical field for bone replacement procedures, due to their properties similar to those of cancellous bone.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias C. Wurm ◽  
Tobias Möst ◽  
Bastian Bergauer ◽  
Dominik Rietzel ◽  
Friedrich Wilhelm Neukam ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yunsheng Dong ◽  
Yufei Liu ◽  
Yuehua Chen ◽  
Xun Sun ◽  
Lin Zhang ◽  
...  

AbstractHydrogels have been extensively favored as drug and cell carriers for the repair of knee cartilage defects. Recruiting mesenchymal stem cells (MSCs) in situ to the defect region could reduce the risk of contamination during cell delivery, which is a highly promising strategy to enhance cartilage repair. Here, a cell-free cartilage tissue engineering (TE) system was developed by applying an injectable chitosan/silk fibroin hydrogel. The hydrogel system could release first stromal cell-derived factor-1 (SDF-1) and then kartogenin (KGN) in a unique sequential drug release mode, which could spatiotemporally promote the recruitment and chondrogenic differentiation of MSCs. This system showed good performance when formulated with SDF-1 (200 ng/mL) and PLGA microspheres loaded with KGN (10 μΜ). The results showed that the hydrogel had good injectability and a reticular porous structure. The microspheres were distributed uniformly in the hydrogel and permitted the sequential release of SDF-1 and KGN. The results of in vitro experiments showed that the hydrogel system had good cytocompatibility and promoted the migration and differentiation of MSCs into chondrocytes. In vivo experiments on articular cartilage defects in rabbits showed that the cell-free hydrogel system was beneficial for cartilage regeneration. Therefore, the composite hydrogel system shows potential for application in cell-free cartilage TE.


2019 ◽  
Vol 47 (9) ◽  
pp. 2216-2224 ◽  
Author(s):  
Ryosuke Matsushita ◽  
Tomoyuki Nakasa ◽  
Masakazu Ishikawa ◽  
Yusuke Tsuyuguchi ◽  
Norimasa Matsubara ◽  
...  

Background: Autologous chondrocyte implantation (ACI) is often performed for large cartilage defects. Because this technique has several disadvantages, including the need for second-stage surgery, cartilage repair using minced cartilage has been suggested. However, this technique could be improved using 3-dimensional scaffolds. Purpose: To examine the ability of chondrocyte migration and proliferation from minced cartilage in atelocollagen gel in vitro and evaluate the repairable potential of minced cartilage embedded in atelocollagen gel covered with a periosteal flap in a rabbit model. Study Design: Controlled laboratory study. Methods: Minced cartilage or isolated chondrocytes from rabbits were embedded in atelocollagen gel and cultured for 3 weeks. Chondrocyte proliferation and matrix production were evaluated in vitro. An osteochondral defect at the trochlear groove was created in 56 rabbits, which were divided into 4 groups. The defect was left empty (defect group), filled with allogenic minced cartilage (minced cartilage group), filled with isolated allogenic chondrocytes embedded in atelocollagen gel (ACI group), or filled with atelocollagen gel (atelocollagen with periosteal flap group). At 4, 12, and 24 weeks after surgery, repair of the defect was evaluated in these 4 groups. Results: In vitro, the number of chondrocytes and abundant matrix on the surface of the gel significantly increased in the minced cartilage group compared with the ACI group ( P < .05). In vivo, the minced cartilage and ACI groups showed good cartilage repair compared with the empty defect and atelocollagen/periosteal flap groups ( P < .05); there was no significant difference in the Pineda score between the minced cartilage and ACI groups. Conclusion: Minced cartilage in atelocollagen gel had good chondrocyte migration and proliferation abilities in vitro, and osteochondral defects were well repaired by implanting minced cartilage embedded in the atelocollagen gel in vivo. Implantation of minced cartilage embedded in atelocollagen gel showed good cartilage repair equivalent to ACI. Clinical Relevance: Implantation of minced cartilage embedded in atelocollagen gel as a 1-step procedure has outcomes similar to those of ACI but is cheaper and more convenient than ACI.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5889
Author(s):  
Petra Arany ◽  
Ildikó Papp ◽  
Marianna Zichar ◽  
Máté Csontos ◽  
János Elek ◽  
...  

One of the most promising emerging innovations in personalized medication is based on 3D printing technology. For use as authorized medications, 3D-printed products require different in vitro tests, including dissolution and biocompatibility investigations. Our objective was to manufacture implantable drug delivery systems using fused deposition modeling, and in vitro tests were performed for the assessment of these products. Polylactic acid, antibacterial polylactic acid, polyethylene terephthalate glycol, and poly(methyl methacrylate) filaments were selected, and samples with 16, 19, or 22 mm diameters and 0%, 5%, 10%, or 15% infill percentages were produced. The dissolution test was performed by a USP dissolution apparatus 1. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide dye (MTT)-based prolonged cytotoxicity test was performed on Caco-2 cells to certify the cytocompatibility properties. The implantable drug delivery systems were characterized by thermogravimetric and heatflow assay, contact angle measurement, scanning electron microscopy, microcomputed tomography, and Raman spectroscopy. Based on our results, it can be stated that the samples are considered nontoxic. The dissolution profiles are influenced by the material properties of the polymers, the diameter, and the infill percentage. Our results confirm the potential of fused deposition modeling (FDM) 3D printing for the manufacturing of different implantable drug delivery systems in personalized medicine and may be applied during surgical interventions.


2021 ◽  
Author(s):  
Ιάκωβος Ξενικάκης

Η χρήση μικροβελόνων είναι μία μέθοδος η οποία επιτρέπει τη διάτρηση της κερατίνης στιβάδας και το σχηματισμό πόρων μέσω των οποίων επιτυγχάνεται διαδερμική χορήγηση φαρμάκων. Με αυτή τη μέθοδο μπορούν να χορηγηθούν φάρμακα τα οποία σε άθικτο δέρμα έχουν μηδαμινή απορρόφηση. Τέτοιου είδους φάρμακα είναι και τα μακρομόρια, μεταξύ των οποίων και οι πρωτεΐνες. Η επίτευξη διαδερμικής χορήγησης μακρομορίων θα βελτίωνε την καθημερινότητα και τη συμμόρφωση στη θεραπεία ασθενών που υποχρεώνονται σε τακτική παρεντερική χορήγηση της θεραπείας τους (π.χ. διαβητικοί). Παράλληλα, η χρήση της Προσθετικής Κατασκευής επιτρέπει την κατασκευή των μικροβελόνων με γρήγορο, εύκολο, ευέλικτο και οικονομικό τρόπο χάρη στους ακόλουθους λόγους: α) τα σχέδια των μικροβελόνων σώζονται ως αρχεία .stl και μπορούν να τροποποιηθούν όποτε κριθεί απαραίτητο, β) η διαδικασία κατασκευής συνοψίζεται σε ένα στάδιο στο οποίο στιβάδες του υλικού εκτύπωσης εναποτίθεται διαδοχικά και ελεγχόμενα στην πλατφόρμα εκτύπωσης και γ) οι συσκευές που απαιτούνται για τη διεκπεραίωση της κατασκευής είναι πολύ απλές (ένας υπολογιστής και ένας εκτυπωτής), ενώ δεν γίνεται χρήση περίπλοκων μηχανών και συνηθισμένων εργαλείων. Το γεγονός αυτό επιτρέπει την εγκατάσταση μικρών μονάδων παραγωγής ακόμη και σε απομακρυσμένα μέρη. Επιπρόσθετα, η χρήση της Προσθετικής Κατασκευής για την κατασκευή μικροβελόνων επιτρέπει κατά περιπτώσεις την εξατομικευμένη χορήγηση φαρμάκων.Σκοπός της παρούσας διδακτορικής διατριβής ήταν η αξιοποίηση της Προσθετικής Κατασκευής και των πλεονεκτημάτων που προσφέρει με στόχο αφενός την κατασκευή συστοιχιών μικροβελόνων και αφετέρου τη χρήση αυτών για χορήγηση μακρομοριακών φαρμακευτικών ουσιών. Αρχικά η μελέτη επικεντρώθηκε στην κατασκευή των μικροβελόνων. Κατασκευάστηκαν δύο είδη μικροβελόνων: α) συμπαγείς (solid) μικροβελόνες με χρήση στερεολιθογραφίας (stereolithography, SLA) και β) κοίλες μικροβελόνες (HMNs) με εκτύπωση μέσω οθόνης υγρών κρυστάλλων (liquid crystal display, LCD). Σε κάθε περίπτωση οι μικροβελόνες προσδιορίστηκαν ως προς τη μορφολογία και τις διαστάσεις τους με χρήση οπτικής μικροσκοπίας και ηλεκτρονικού μικροσκοπίου σάρωσης (scanning electron microscopy, SEM). Επιπρόσθετα, έγινε μελέτη των μηχανικών τους ιδιοτήτων μέσω δοκιμών μονοαξονικής θλίψης, ενώ ακόμη έγιναν δοκιμές διείσδυσης σε δείγματα δέρματος ανθρώπινης προέλευσης. Παράλληλα, οι δοκιμές μονοαξονικής θλίψης και διείσδυσης προσομοιώθηκαν μέσω ανάλυσης πεπερασμένων στοιχείων (Finite Element Analysis, FEA). Οι συμπαγείς μικροβελόνες (6x6) χρησιμοποιήθηκαν για τη διαδερμική χορήγηση των πρότυπων χρωστικών καλσεΐνη και FITC-Dextran (4000Da). Ακολούθως έγινε επεξεργασία των αποτελεσμάτων διαπερατότητας και υπολογίστηκε η αύξηση της διαπερατότητας του δέρματος για κάθε χρωστική έπειτα από τη μεσολάβηση των μικροβελόνων. Στα δείγματα δέρματος που χρησιμοποιήθηκαν σε αυτά τα πειράματα έγιναν τομές με κρυοστάτη και χρώση αιματοξυλίνης-εοσίνης.Οι HMNs κατασκευάστηκαν αρχικά ως 3x3 συστοιχίες υπό γεωμετρία κυρτής τριγωνικής πυραμίδας. Ακολούθως μελετήθηκε η ικανότητα διάβασης υδατικού μέσου από τα μικροκανάλια και έτσι διαπιστώθηκε η ανάγκη προσθήκης επιφανειοδραστικού παράγοντα στην επιφάνεια των μικροβελόνων. Η επικάλυψη έγινε με 5% Pluronic F-127 και η προσθήκη του επιβεβαιώθηκε με φάσμα FTIR και μελέτη γωνίας επαφής. Για τις ανάγκες της χορήγησης κατασκευάστηκαν δεξαμενές με κατασκευή μέσω μοντελοποίησης απόθεσης τήγματος (fused deposition modeling, FDM). Οι δεξαμενές συναρμολογήθηκαν με τις μικροβελόνες δίνοντας την τελική συσκευή χορήγησης. Στη συνέχεια διεξήχθησαν μελέτες διαπερατότητας μέσω συνθετικών μεμβρανών χρησιμοποιώντας οξική οκτρεοτίδη. Ακόμη, χρησιμοποιώντας εκχυλίσματα τρισδιάστατα εκτυπωμένου υλικού έγιναν μελέτες τοξικότητας σε HaCaT κυτταρικές σειρές. Σε επόμενο στάδιο σχεδιάστηκε μια παραλλαγή των παραπάνω συστοιχιών και κατασκευάστηκαν 6x6 συστοιχίες μικροβελόνων της ίδιας γεωμετρίας. Επιπρόσθετα, κατασκευάστηκαν 6x6 συστοιχίες μικροβελόνων γεωμετρίας σύριγγας (syringe-like), καθώς και ρεζερβουάρ κατασκευασμένα με LCD μέθοδο. Έπειτα από προσθήκη επιφανειοδραστικού και διεξαγωγή υπολογιστικής μαγνητικής τομογραφίας (μ-OCT) όπου προσδιορίστηκαν οι εσωτερικοί όγκοι των μικροκαναλιών, τα δύο είδη μικροβελόνων χρησιμοποιήθηκαν για in vitro διαδερμική χορήγηση ινσουλίνης.Τα αποτελέσματα της έρευνας έδειξαν ότι οι μικροβελόνες που κατασκευάστηκαν ήταν κατάλληλες για διάτρηση του δέρματος καθώς και συνθετικών μεμβρανών. Διαστασιολογικά οι μικροβελόνες κυμαίνονται εντός των ορίων που εξασφαλίζουν την ανώδυνη εφαρμογή τους. Η μηχανική αντοχή τους επιτρέπει τη χρήση για την οποία προορίζονται χωρίς να υπάρχει κίνδυνος θραύσης και παραμονής τμήματος των μικροβελόνων εντός των ιστών του δέρματος, με συντελεστή ασφαλείας (safety factor) πολύ μεγαλύτερο της μονάδας και με τα αποτελέσματα FEA να είναι σε συμφωνία με τα πειραματικά δεδομένα. Η προσθήκη του επιφανειοδραστικού παράγοντα στις HMNs ήταν επιτυχής και επέτρεψε την ελεύθερη δίοδο υδατικών διαλυμάτων δραστικών ουσιών. Η κατασκευή των ρεζερβουάρ ήταν επίσης επιτυχής και απέδωσε τις επιθυμητές διαστάσεις, επιτρέποντας έτσι τη συναρμολόγηση των ρεζερβουάρ με τις HMNs χωρίς να σημειώνονται διαρροές. Σε όλες τις περιπτώσεις πειραμάτων διαπερατότητας παρατηρήθηκε αύξηση της ποσότητας δραστικής ουσίας που διαπερνά το δέρμα ή τις συνθετικές μεμβράνες έπειτα από τη μεσολάβηση των μικροβελόνων. Ακόμη, οι τοξικολογικές μελέτες έδειξαν ότι η τρισδιάστατα εκτυπωμένη ρητίνη είναι ασφαλής για ολιγόλεπτη επαφή με το δέρμα. Στην παρούσα διδακτορική διατριβή αποδείχθηκε ότι η Προσθετική Κατασκευή είναι κατάλληλη για κατασκευή μικροβελόνων και συνεπώς δίνεται η δυνατότητα να αξιοποιηθούν τα πλεονεκτήματα που προσφέρει ως μέθοδος. Επίσης, κατόπιν αποτελεσματικής διάτρησης του δέρματος, αποδείχθηκε ότι είναι εφικτή η διαδερμική χορήγηση φαρμάκων μεγάλου μοριακού βάρους (ενδεικτικά εδώ FITC-Dextran 4000Da, οξική οκτρεοτίδη, ινσουλίνη). Εν κατακλείδι, οι τρισδιάστατα εκτυπωμένες μικροβελόνες είναι κατάλληλες για διαδερμική χορήγηση μακρομορίων.


2021 ◽  
Vol 10 (1) ◽  
pp. 1359-1373
Author(s):  
Wenzhao Wang ◽  
Boqing Zhang ◽  
Lihong Zhao ◽  
Mingxin Li ◽  
Yanlong Han ◽  
...  

Abstract Repair of critical bone defects is a challenge in the orthopedic clinic. 3D printing is an advanced personalized manufacturing technology that can accurately shape internal structures and external contours. In this study, the composite scaffolds of polylactic acid (PLA) and nano-hydroxyapatite (n-HA) were manufactured by the fused deposition modeling (FDM) technique. Equal mass PLA and n-HA were uniformly mixed to simulate the organic and inorganic phases of natural bone. The suitability of the composite scaffolds was evaluated by material characterization, mechanical property, and in vitro biocompatibility, and the osteogenesis induction in vitro was further tested. Finally, the printed scaffold was implanted into the rabbit femoral defect model to evaluate the osteogenic ability in vivo. The results showed that the composite scaffold had sufficient mechanical strength, appropriate pore size, and biocompatibility. Most importantly, the osteogenic induction performance of the composite scaffold was significantly better than that of the pure PLA scaffold. In conclusion, the PLA/n-HA scaffold is a promising composite biomaterial for bone defect repair and has excellent clinical transformation potential.


Sign in / Sign up

Export Citation Format

Share Document