scholarly journals Solution structure of subunit a, a 104-363, of the Saccharomyces cerevisiae V-ATPase and the importance of its C-terminus in structure formation

2012 ◽  
Vol 44 (3) ◽  
pp. 341-350 ◽  
Author(s):  
Phat Vinh Dip ◽  
Wuan Geok Saw ◽  
Manfred Roessle ◽  
Vladimir Marshansky ◽  
Gerhard Grüber
2011 ◽  
Vol 436 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Wen Zhang ◽  
Jiahai Zhang ◽  
Xuecheng Zhang ◽  
Chao Xu ◽  
Xiaoming Tu

Chromatin modifications play important roles in cellular biological process. A novel conserved domain family, YEATS, has been discovered in a variety of eukaryotic species ranging from yeasts to humans. Taf14, which is involved in a few protein complexes of chromatin remodelling and gene transcription, and is essential for keeping chromosome stability, regular cell growth and transcriptional regulation, contains a YEATS domain at its N-terminus. In the present study, we determined the solution structure of the Taf14 YEATS domain using NMR spectroscopy. The Taf14 YEATS domain adopts a global fold of an elongated β-sandwich, similar to the Yaf9 YEATS domain. However, the Taf14 YEATS domain differs significantly from the Yaf9 YEATS domain in some aspects, which might indicate different structural classes of the YEATS domain family. Functional studies indicate that the YEATS domain is critical for the function of Taf14 in inhibiting cell growth under stress conditions. In addition, our results show that the C-terminus of Taf14 is responsible for its interaction with Sth1, which is an essential component of the RSC complex. Taken together, this implies that Taf14 is involved in transcriptional activation of Saccharomyces cerevisiae and the YEATS domain of Taf14 might play a negative role in cell growth.


2004 ◽  
Vol 377 (2) ◽  
pp. 459-467 ◽  
Author(s):  
Jose M. LAPLAZA ◽  
Magnolia BOSTICK ◽  
Derek T. SCHOLES ◽  
M. Joan CURCIO ◽  
Judy CALLIS

In Saccharomyces cerevisiae, the ubiquitin-like protein Rub1p (related to ubiquitin 1 protein) covalently attaches to the cullin protein Cdc53p (cell division cycle 53 protein), a subunit of a class of ubiquitin E3 ligases named SCF (Skp1–Cdc53–F-box protein) complex. We identified Rtt101p (regulator of Ty transposition 101 protein, where Ty stands for transposon of yeast), initially found during a screen for proteins to confer retrotransposition suppression, and Cul3p (cullin 3 protein), a protein encoded by the previously uncharacterized open reading frame YGR003w, as two new in vivo targets for Rub1p conjugation. These proteins show significant identity with Cdc53p and, therefore, are cullin proteins. Modification of Cul3p is eliminated by deletion of the Rub1p pathway through disruption of either RUB1 or its activating enzyme ENR2/ULA1. The same disruptions in the Rub pathway decreased the percentage of total Rtt101p that is modified from approx. 60 to 30%. This suggests that Rtt101p has an additional RUB1- and ENR2-independent modification. All modified forms of Rtt101p and Cul3p were lost when a single lysine residue in a conserved region near the C-terminus was replaced by an arginine residue. These results suggest that this lysine residue is the site of Rub1p-dependent and -independent modifications in Rtt101p and of Rub1p-dependent modification in Cul3p. An rtt101Δ strain was hypersensitive to thiabendazole, isopropyl (N-3-chlorophenyl) carbamate and methyl methanesulphonate, but rub1Δ strains were not. Whereas rtt101Δ strains exhibited a 14-fold increase in Ty1 transposition, isogenic rub1Δ strains did not show statistically significant increases. Rtt101K791Rp, which cannot be modified, complemented for Rtt101p function in a transposition assay. Altogether, these results suggest that neither the RUB1-dependent nor the RUB1-independent form of Rtt101p is required for Rtt101p function. The identification of additional Rub1p targets in S. cerevisiae suggests an expanded role for Rub in this organism.


2001 ◽  
Vol 360 (3) ◽  
pp. 539-548 ◽  
Author(s):  
Allan M. TORRES ◽  
R. Manjunatha KINI ◽  
Nirthanan SELVANAYAGAM ◽  
Philip W. KUCHEL

A high-resolution solution structure of bucandin, a neurotoxin from Malayan krait (Bungarus candidus), was determined by 1H-NMR spectroscopy and molecular dynamics. The average backbone root-mean-square deviation for the 20 calculated structures and the mean structure is 0.47 Å (1 Å = 0.1nm) for all residues and 0.24 Å for the well-defined region that spans residues 23–58. Secondary-structural elements include two antiparallel β-sheets characterized by two and four strands. According to recent X-ray analysis, bucandin adopts a typical three-finger loop motif and yet it has some peculiar characteristics that set it apart from other common α-neurotoxins. The presence of a fourth strand in the second antiparallel β-sheet had not been observed before in three-finger toxins, and this feature was well represented in the NMR structure. Although the overall fold of the NMR structure is similar to that of the X-ray crystal structure, there are significant differences between the two structures that have implications for the pharmacological action of the toxin. These include the extent of the β-sheets, the conformation of the region spanning residues 42–49 and the orientation of some side chains. In comparison with the X-ray structure, the NMR structure shows that the hydrophobic side chains of Trp27 and Trp36 are stacked together and are orientated towards the tip of the middle loop. The NMR study also showed that the two-stranded β-sheet incorporated in the first loop, as defined by residues 1–22, and the C-terminus from Asn59, is probably flexible relative to the rest of the molecule. On the basis of the dispositions of the hydrophobic and hydrophilic side chains, the structure of bucandin is clearly different from those of cytotoxins.


1990 ◽  
Vol 10 (9) ◽  
pp. 4744-4756
Author(s):  
J Schultz ◽  
L Marshall-Carlson ◽  
M Carlson

The SSN6 protein functions as a negative regulator of a variety of genes in Saccharomyces cerevisiae and is required for normal growth, mating, and sporulation. It is a member of a family defined by a repeated amino acid sequence, the TPR (tetratricopeptide repeat) motif. Here, we have used specific antibody to identify and characterize the SSN6 protein. Both SSN6 and a bifunctional SSN6-beta-galactosidase fusion protein were localized in the nucleus by immunofluorescence staining. The N-terminal one-third of the protein containing the TPR units was identified as the region that is important for SSN6 function. Analysis of four nonsense alleles, isolated as intragenic suppressors of an ssn6::URA3 insertion, revealed that polypeptides truncated after TPR unit 7 provide SSN6 function. Deletion analysis suggested that TPR units are required but that 4 of the 10 TPR units are sufficient. In addition, deletion studies indicated that three very long, homogeneous tracts of polyglutamine and poly(glutamine-alanine) are dispensable. Previous genetic evidence suggested the SSN6 protein as a possible target of the SNF1 protein kinase. Here, we show that the C terminus of SSN6 is phosphorylated in vivo and that the SNF1 kinase is not responsible for most of the phosphorylation. Finally, SSN6 has a modest effect on the maintenance of minichromosomes.


1990 ◽  
Vol 10 (10) ◽  
pp. 5071-5076
Author(s):  
C A Hrycyna ◽  
S Clarke

Membrane extracts of sterile Saccharomyces cerevisiae strains containing the a-specific ste14 mutation lack a farnesyl cysteine C-terminal carboxyl methyltransferase activity that is present in wild-type a and alpha cells. Other a-specific sterile strains with ste6 and ste16 mutations also have wild-type levels of the farnesyl cysteine carboxyl methyltransferase activity. This enzyme activity, detected by using a synthetic peptide sequence based on the C-terminus of a ras protein, may be responsible not only for the essential methylation of the farnesyl cysteine residue of a mating factor, but also for the methylation of yeast RAS1 and RAS2 proteins and possibly other polypeptides with similar C-terminal structures. We demonstrate that the farnesylation of the cysteine residue in the peptide is required for the methyltransferase activity, suggesting that methyl esterification follows the lipidation reaction in the cell. To show that the loss of methyltransferase activity is a direct result of the ste14 mutation, we transformed ste14 mutant cells with a plasmid complementing the mating defect of this strain and found that active enzyme was produced. Finally, we demonstrated that a similar transformation of cells possessing the wild-type STE14 gene resulted in sixfold overproduction of the enzyme. Although more complicated possibilities cannot be ruled out, these results suggest that STE14 is a candidate for the structural gene for a methyltransferase involved in the formation of isoprenylated cysteine alpha-methyl ester C-terminal structures.


1987 ◽  
Vol 7 (7) ◽  
pp. 2309-2315
Author(s):  
M S Marshall ◽  
J B Gibbs ◽  
E M Scolnick ◽  
I S Sigal

Activating mutations (valine 19 or leucine 68) were introduced into the Saccharomyces cerevisiae RAS1 and RAS2 genes. In addition, a deletion was introduced into the wild-type gene and into an activated RAS2 gene, removing the segment of the coding region for the unique C-terminal domain that lies between the N-terminal 174 residues and the penultimate 8-residue membrane attachment site. At low levels of expression, a dominant activated phenotype, characterized by low glycogen levels and poor sporulation efficiency, was observed for both full-length RAS1 and RAS2 variants having impaired GTP hydrolytic activity. Lethal CDC25 mutations were bypassed by the expression of mutant RAS1 or RAS2 proteins with activating amino acid substitutions, by expression of RAS2 proteins lacking the C-terminal domain, or by normal and oncogenic mammalian Harvey ras proteins. Biochemical measurements of adenylate cyclase in membrane preparations showed that the expression of RAS2 proteins lacking the C-terminal domain can restore adenylate cyclase activity to cdc25 membranes.


2005 ◽  
Vol 187 (10) ◽  
pp. 3496-3501 ◽  
Author(s):  
Pablo Gutiérrez ◽  
Yan Li ◽  
Michael J. Osborne ◽  
Ekaterina Pomerantseva ◽  
Qian Liu ◽  
...  

ABSTRACT The carbon storage regulator A (CsrA) is a protein responsible for the repression of a variety of stationary-phase genes in bacteria. In this work, we describe the nuclear magnetic resonance (NMR)-based structure of the CsrA dimer and its RNA-binding properties. CsrA is a dimer of two identical subunits, each composed of five strands, a small α-helix and a flexible C terminus. NMR titration experiments suggest that the β1-β2 and β3-β4 loops and the C-terminal helix are important elements in RNA binding. Even though the β3-β4 loop contains a highly conserved RNA-binding motif, GxxG, typical of KH domains, our structure excludes CsrA from being a member of this protein family, as previously suggested. A mechanism for the recognition of mRNAs downregulated by CsrA is proposed.


1998 ◽  
Vol 18 (3) ◽  
pp. 1284-1295 ◽  
Author(s):  
Alo Ray ◽  
Kurt W. Runge

ABSTRACT The telomeres of most organisms consist of short repeated sequences that can be elongated by telomerase, a reverse transcriptase complex that contains its own RNA template for the synthesis of telomere repeats. In Saccharomyces cerevisiae, the RAP1gene encodes the major telomere binding protein Rap1p. Here we use a quantitative telomere formation assay to demonstrate that Rap1p C termini can enhance telomere formation more than 30-fold when they are located at internal sites. This stimulation is distinct from protection from degradation. Enhancement of formation required the gene for telomerase RNA but not Sir1p, Sir2p, Sir3p, Sir4p, Tel1p, or the Rif1p binding site in the Rap1p C terminus. Our data suggest that Rap1p C termini enhance telomere formation by attracting or increasing the activity of telomerase near telomeres. Earlier work suggests that Rap1p molecules at the chromosome terminus inhibit the elongation of long telomeres by blocking the access of telomerase. Our results suggest a model where a balance between internal Rap1p increasing telomerase activity and Rap1p at the termini of long telomeres controlling telomerase access maintains telomeres at a constant length.


1993 ◽  
Vol 13 (11) ◽  
pp. 6876-6888 ◽  
Author(s):  
J B Konopka

Mating pheromone receptors activate a G-protein signaling pathway that induces changes in transcription, cell division, and morphogenesis needed for the conjunction of Saccharomyces cerevisiae. The C terminus of the alpha-factor pheromone receptor functions in two complex processes, adaptation and morphogenesis. Adaptation to alpha-factor may occur through receptor desensitization, and alpha-factor-induced morphogenesis forms the conjugation bridge between mating cells. A plasmid overexpression strategy was used to isolate a new gene, AFR1, which acts together with the receptor C terminus to promote adaptation. The expression of AFR1 was highly induced by alpha-factor. Unexpectedly, cells lacking AFR1 showed a defect in alpha-factor-stimulated morphogenesis that was similar to the morphogenesis defect observed in cells producing C-terminally truncated alpha-factor receptors. In contrast, AFR1 overexpression resulted in longer projections of morphogenesis, which suggests that this gene may directly stimulate morphogenesis. These results indicate that AFR1 encodes a developmentally regulated function that coordinates both the regulation of receptor signaling and the induction of morphogenesis during conjugation.


Sign in / Sign up

Export Citation Format

Share Document