KIFC1 promotes aerobic glycolysis in endometrial cancer cells by regulating the c-myc pathway

Author(s):  
Kening Zhou ◽  
Jing Lin ◽  
Mimi Dai ◽  
Yingying He ◽  
Jingui Xu ◽  
...  
2018 ◽  
Vol 18 (7) ◽  
pp. 1054-1063 ◽  
Author(s):  
Ning Ding ◽  
Hong Zhang ◽  
Shan Su ◽  
Yumei Ding ◽  
Xiaohui Yu ◽  
...  

Background: Endometrial cancer is a common cause of death in gynecological malignancies. Cisplatin is a clinically chemotherapeutic agent. However, drug-resistance is the primary cause of treatment failure. Objective: Emodin is commonly used clinically to increase the sensitivity of chemotherapeutic agents, yet whether Emodin promotes the role of Cisplatin in the treatment of endometrial cancer has not been studied. Method: CCK-8 kit was utilized to determine the growth of two endometrial cancer cell lines, Ishikawa and HEC-IB. The apoptosis level of Ishikawa and HEC-IB cells was detected by Annexin V / propidium iodide double-staining assay. ROS level was detected by DCFH-DA and NADPH oxidase expression. Expressions of drug-resistant genes were examined by real-time PCR and Western blotting. Results: Emodin combined with Cisplatin reduced cell growth and increased the apoptosis of endometrial cancer cells. Co-treatment of Emodin and Cisplatin increased chemosensitivity by inhibiting the expression of drugresistant genes through reducing the ROS levels in endometrial cancer cells. In an endometrial cancer xenograft murine model, the tumor size was reduced and animal survival time was increased by co-treatment of Emodin and Cisplatin. Conclusion: This study demonstrates that Emodin enhances the chemosensitivity of Cisplatin on endometrial cancer by inhibiting ROS-mediated expression of drug-resistance genes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ling Jin ◽  
Eun-Yeong Kim ◽  
Tae-Wook Chung ◽  
Chang Woo Han ◽  
So Young Park ◽  
...  

AbstractMost cancer cells primarily produce their energy through a high rate of glycolysis followed by lactic acid fermentation even in the presence of abundant oxygen. Pyruvate dehydrogenase kinase (PDK) 1, an enzyme responsible for aerobic glycolysis via phosphorylating and inactivating pyruvate dehydrogenase (PDH) complex, is commonly overexpressed in tumors and recognized as a therapeutic target in colorectal cancer. Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata Bunge (Compositae). Here, we report that HsA is a PDK1 inhibitor can reduce the growth of colorectal cancer and consequent activation of mitochondrial ROS-dependent apoptotic pathway both in vivo and in vitro. Computational simulation and biochemical assays showed that HsA directly binds to the lipoamide-binding site of PDK1, and subsequently inhibits the interaction of PDK1 with the E2 subunit of PDH complex. As a result of PDK1 inhibition, lactate production was decreased, but oxygen consumption was increased. Mitochondrial ROS levels and mitochondrial damage were also increased. Consistent with these observations, the apoptosis of colorectal cancer cells was promoted by HsA with enhanced activation of caspase-3 and -9. These results suggested that HsA might be a potential candidate for developing a novel anti-cancer drug through suppressing cancer metabolism.


Author(s):  
Shuai Huang ◽  
Ye Li ◽  
Guihua Sheng ◽  
Qingwei Meng ◽  
Qian Hu ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 1259
Author(s):  
Qiong Wu ◽  
Bo Zhao ◽  
Guangchao Sui ◽  
Jinming Shi

Aberrant metabolism is one of the hallmarks of cancers. The contributions of dysregulated metabolism to cancer development, such as tumor cell survival, metastasis and drug resistance, have been extensively characterized. “Reprogrammed” metabolic pathways in cancer cells are mainly represented by excessive glucose consumption and hyperactive de novo lipogenesis. Natural compounds with anticancer activities are constantly being demonstrated to target metabolic processes, such as glucose transport, aerobic glycolysis, fatty acid synthesis and desaturation. However, their molecular targets and underlying anticancer mechanisms remain largely unclear or controversial. Mounting evidence indicated that these natural compounds could modulate the expression of key regulatory enzymes in various metabolic pathways at transcriptional and translational levels. Meanwhile, natural compounds could also inhibit the activities of these enzymes by acting as substrate analogs or altering their protein conformations. The actions of natural compounds in the crosstalk between metabolism modulation and cancer cell destiny have become increasingly attractive. In this review, we summarize the activities of natural small molecules in inhibiting key enzymes of metabolic pathways. We illustrate the structural characteristics of these compounds at the molecular level as either inhibitor of various enzymes or regulators of metabolic pathways in cancer cells. Our ultimate goal is to both facilitate the clinical application of natural compounds in cancer therapies and promote the development of novel anticancer therapeutics.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 97
Author(s):  
Odeya Marciano ◽  
Linoy Mehazri ◽  
Sally Shpungin ◽  
Alexander Varvak ◽  
Eldad Zacksenhaus ◽  
...  

Aerobic glycolysis is an important metabolic adaptation of cancer cells. However, there is growing evidence that reprogrammed mitochondria also play an important metabolic role in metastatic dissemination. Two constituents of the reprogrammed mitochondria of cancer cells are the intracellular tyrosine kinase Fer and its cancer- and sperm-specific variant, FerT. Here, we show that Fer and FerT control mitochondrial susceptibility to therapeutic and hypoxic stress in metastatic colon (SW620) and non-small cell lung cancer (NSCLC-H1299) cells. Fer- and FerT-deficient SW620 and H1299 cells (SW∆Fer/FerT and H∆Fer/FerT cells, respectively) become highly sensitive to metformin treatment and to hypoxia under glucose-restrictive conditions. Metformin impaired mitochondrial functioning that was accompanied by ATP deficiency and robust death in SW∆Fer/FerT and H∆Fer/FerT cells compared to the parental SW620 and H1299 cells. Notably, selective knockout of the fer gene without affecting FerT expression reduced sensitivity to metformin and hypoxia seen in SW∆Fer/FerT cells. Thus, Fer and FerT modulate the mitochondrial susceptibility of metastatic cancer cells to hypoxia and metformin. Targeting Fer/FerT may therefore provide a novel anticancer treatment by efficient, selective, and more versatile disruption of mitochondrial function in malignant cells.


Oncogene ◽  
2016 ◽  
Vol 35 (39) ◽  
pp. 5191-5201 ◽  
Author(s):  
I I Lee ◽  
K Maniar ◽  
J P Lydon ◽  
J J Kim

APOPTOSIS ◽  
2021 ◽  
Author(s):  
Latoya McGlorthan ◽  
Ana Paucarmayta ◽  
Yovanni Casablanca ◽  
G. Larry Maxwell ◽  
Viqar Syed

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1067
Author(s):  
Domenico Conza ◽  
Paola Mirra ◽  
Gaetano Calì ◽  
Luigi Insabato ◽  
Francesca Fiory ◽  
...  

Multiple lines of evidence suggest that metformin, an antidiabetic drug, exerts anti-tumorigenic effects in different types of cancer. Metformin has been reported to affect cancer cells’ metabolism and proliferation mainly through the activation of AMP-activated protein kinase (AMPK). Here, we show that metformin inhibits, indeed, endometrial cancer cells’ growth and induces apoptosis. More importantly, we report that metformin affects two important pro-survival pathways, such as the Unfolded Protein Response (UPR), following endoplasmic reticulum stress, and the WNT/β-catenin pathway. GRP78, a key protein in the pro-survival arm of the UPR, was indeed downregulated, while GADD153/CHOP, a transcription factor that mediates the pro-apoptotic response of the UPR, was upregulated at both the mRNA and protein level. Furthermore, metformin dramatically inhibited β-catenin mRNA and protein expression. This was paralleled by a reduction in β-catenin transcriptional activity, since metformin inhibited the activity of a TCF/LEF-luciferase promoter. Intriguingly, compound C, a well-known inhibitor of AMPK, was unable to prevent all these effects, suggesting that metformin might inhibit endometrial cancer cells’ growth and survival through the modulation of specific branches of the UPR and the inhibition of the Wnt/β-catenin pathway in an AMPK-independent manner. Our findings may provide new insights on the mechanisms of action of metformin and refine the use of this drug in the treatment of endometrial cancer.


Sign in / Sign up

Export Citation Format

Share Document