Critical Role of Zinc Ion on E. coli Glutamyl-Queuosine-tRNAAsp Synthetase (Glu-Q-RS) Structure and Function

2014 ◽  
Vol 33 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Sutapa Ray ◽  
Victor Banerjee ◽  
Mickael Blaise ◽  
Baisakhi Banerjee ◽  
Kali Pada Das ◽  
...  
Cephalalgia ◽  
2018 ◽  
Vol 39 (13) ◽  
pp. 1675-1682 ◽  
Author(s):  
Samaira Younis ◽  
Anders Hougaard ◽  
Rodrigo Noseda ◽  
Messoud Ashina

Objective To review and discuss the literature on the role of thalamic structure and function in migraine. Discussion The thalamus holds an important position in our understanding of allodynia, central sensitization and photophobia in migraine. Structural and functional findings suggest abnormal functional connectivity between the thalamus and various cortical regions pointing towards an altered pain processing in migraine. Pharmacological nociceptive modulation suggests that the thalamus is a potential drug target. Conclusion A critical role for the thalamus in migraine-related allodynia and photophobia is well established. Additionally, the thalamus is most likely involved in the dysfunctional pain modulation and processing in migraine, but further research is needed to clarify the exact clinical implications of these findings.


2004 ◽  
Vol 279 (34) ◽  
pp. 35932-35941 ◽  
Author(s):  
Aleksandar Stojanovic ◽  
Jeremiah Stitham ◽  
John Hwa

1986 ◽  
Vol 250 (4) ◽  
pp. F579-F589 ◽  
Author(s):  
H. D. Humes

The potential for calcium to play a key role in cell injury has been long suspected. Major sites of calcium action to promote cell injury include the plasma membrane, mitochondria, endoplasmic reticulum, and the cytoskeleton. Major mechanisms of calcium action to promote cell injury include activation of phospholipases, direct and indirect effects on permeability pathways, and effects on contractile and cytoskeletal structure and function. The activation of phospholipases and deterioration of mitochondrial structure and function by calcium appear to be most important in the evolution of cell injury. Tissue calcium levels invariably increase when lethal cell injury develops in a tissue and is due predominantly to mitochondrial accumulation and sequestration. The simultaneous occurrence of cell calcium overload and lethal cell injury, however, only establishes an association between these two events but does not prove causality. Over the past several years, a large amount of data has established that calcium plays a critical modifying role in the pathogenesis of both ischemic and toxic cell injury, but evidence for the thesis that calcium is the “final common pathway” for lethal cell injury is not conclusive. Many studies have emphasized the role of calcium influx from extracellular to intracellular spaces with resulting cellular calcium overload in cell injury. A critical role for intracellular redistribution of calcium pools rather than cellular calcium influx during the important early stages of cell injury may be more important. Modifying alterations in cell calcium redistribution or cellular calcium influx with a variety of agents has been beneficial in ameliorating the degree of cell injury in a number of experimental settings. It is still unclear whether these beneficial effects are due mainly to alterations of calcium-mediated processes that determine the reversibility of injury or are due to alterations in other critical metabolic processes not importantly influenced by calcium.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Julia Greenfield ◽  
Xiaoran Shang ◽  
Heng Luo ◽  
Yan Zhou ◽  
Sara B. Linden ◽  
...  

Abstract The genome of Escherichia coli O157:H7 bacteriophage vB_EcoM_CBA120 encodes four distinct tailspike proteins (TSPs). The four TSPs, TSP1-4, attach to the phage baseplate forming a branched structure. We report the 1.9 Å resolution crystal structure of TSP2 (ORF211), the TSP that confers phage specificity towards E. coli O157:H7. The structure shows that the N-terminal 168 residues involved in TSPs complex assembly are disordered in the absence of partner proteins. The ensuing head domain contains only the first of two fold modules seen in other phage vB_EcoM_CBA120 TSPs. The catalytic site resides in a cleft at the interface between adjacent trimer subunits, where Asp506, Glu568, and Asp571 are located in close proximity. Replacement of Asp506 and Asp571 for alanine residues abolishes enzyme activity, thus identifying the acid/base catalytic machinery. However, activity remains intact when Asp506 and Asp571 are mutated into asparagine residues. Analysis of additional site-directed mutants in the background of the D506N:D571N mutant suggests engagement of an alternative catalytic apparatus comprising Glu568 and Tyr623. Finally, we demonstrate the catalytic role of two interacting glutamate residues of TSP1, located in a cleft between two trimer subunits, Glu456 and Glu483, underscoring the diversity of the catalytic apparatus employed by phage vB_EcoM_CBA120 TSPs.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

Correlations between structure and function of biological macromolecules have been studied intensively for many years, mostly by indirect methods. High resolution electron microscopy is a unique tool which can provide such information directly by comparing the conformation of biopolymers in their biologically active and inactive state. We have correlated the structure and function of ribosomes, ribonucleoprotein particles which are the site of protein biosynthesis. 70S E. coli ribosomes, used in this experiment, are composed of two subunits - large (50S) and small (30S). The large subunit consists of 34 proteins and two different ribonucleic acid molecules. The small subunit contains 21 proteins and one RNA molecule. All proteins (with the exception of L7 and L12) are present in one copy per ribosome.This study deals with the changes in the fine structure of E. coli ribosomes depleted of proteins L7 and L12. These proteins are unique in many aspects.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


2020 ◽  
Vol 118 (3) ◽  
pp. 258a
Author(s):  
Laszlo Csernoch ◽  
Mónika Gönczi ◽  
Zsolt Ráduly ◽  
László Szabó ◽  
Nóra Dobrosi ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 148
Author(s):  
Marius Bredon ◽  
Elisabeth Depuydt ◽  
Lucas Brisson ◽  
Laurent Moulin ◽  
Ciriac Charles ◽  
...  

The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host’s diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the “eco-holobiont” conceptualization of macroorganisms.


Author(s):  
Rachel L. Leon ◽  
Imran N. Mir ◽  
Christina L. Herrera ◽  
Kavita Sharma ◽  
Catherine Y. Spong ◽  
...  

Abstract Children with congenital heart disease (CHD) are living longer due to effective medical and surgical management. However, the majority have neurodevelopmental delays or disorders. The role of the placenta in fetal brain development is unclear and is the focus of an emerging field known as neuroplacentology. In this review, we summarize neurodevelopmental outcomes in CHD and their brain imaging correlates both in utero and postnatally. We review differences in the structure and function of the placenta in pregnancies complicated by fetal CHD and introduce the concept of a placental inefficiency phenotype that occurs in severe forms of fetal CHD, characterized by a myriad of pathologies. We propose that in CHD placental dysfunction contributes to decreased fetal cerebral oxygen delivery resulting in poor brain growth, brain abnormalities, and impaired neurodevelopment. We conclude the review with key areas for future research in neuroplacentology in the fetal CHD population, including (1) differences in structure and function of the CHD placenta, (2) modifiable and nonmodifiable factors that impact the hemodynamic balance between placental and cerebral circulations, (3) interventions to improve placental function and protect brain development in utero, and (4) the role of genetic and epigenetic influences on the placenta–heart–brain connection. Impact Neuroplacentology seeks to understand placental connections to fetal brain development. In fetuses with CHD, brain growth abnormalities begin in utero. Placental microstructure as well as perfusion and function are abnormal in fetal CHD.


Sign in / Sign up

Export Citation Format

Share Document