Poly(ethylene 2,6-naphthalate) blends containing a phenylphosphonic acid salts compound with a highly enhanced crystallization rate

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Jiajie Yin ◽  
Faliang Luo ◽  
Mengke Wang
Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Xiangning Wen ◽  
Yunlan Su ◽  
Shaofan Li ◽  
Weilong Ju ◽  
Dujin Wang

In this work, the crystallization kinetics of poly(ethylene oxide) (PEO) matrix included with poly(ethylene glycol) (PEG) grafted silica (PEG-g-SiO2) nanoparticles and bare SiO2 were systematically investigated by differential scanning calorimetry (DSC) and polarized light optical microscopy (PLOM) method. PEG-g-SiO2 can significantly increase the crystallinity and crystallization temperature of PEO matrix under the non-isothermal crystallization process. Pronounced effects of PEG-g-SiO2 on the crystalline morphology and crystallization rate of PEO were further characterized by employing spherulitic morphological observation and isothermal crystallization kinetics analysis. In contrast to the bare SiO2, PEG-g-SiO2 can be well dispersed in PEO matrix at low P/N (P: Molecular weight of matrix chains, N: Molecular weight of grafted chains), which is a key factor to enhance the primary nucleation rate. In particular, we found that the addition of PEG-g-SiO2 slows the spherulitic growth fronts compared to the neat PEO. It is speculated that the interfacial structure of the grafted PEG plays a key role in the formation of nuclei sites, thus ultimately determines the crystallization behavior of PEO PNCs and enhances the overall crystallization rate of the PEO nanocomposites.


RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37139-37147 ◽  
Author(s):  
Diran Wang ◽  
Faliang Luo ◽  
Zhiyuan Shen ◽  
Xuejian Wu ◽  
Yaping Qi

In order to overcome low crystallization rate of PET, HPN-68L was selected to replace the special nucleate agent of PET to improve PET crystallization for its carboxylate anion structure which usually showed high induced nucleation ability for PET.


2014 ◽  
Vol 16 (4) ◽  
pp. 45-50 ◽  
Author(s):  
Sandra Paszkiewicz ◽  
Małgorzata Nachman ◽  
Anna Szymczyk ◽  
Zdeno Špitalský ◽  
Jaroslav Mosnáček ◽  
...  

Abstract This work is the continuation and refinement of already published communications based on PET/EG nanocomposites prepared by in situ polymerization1, 2. In this study, nanocomposites based on poly(ethylene terephthalate) with expanded graphite were compared to those with functionalized graphite sheets (GO). The results suggest that the degree of dispersion of nanoparticles in the PET matrix has important effect on the structure and physical properties of the nanocomposites. The existence of graphene sheets nanoparticles enhances the crystallization rate of PET. It has been confirmed that in situ polymerization is the effective method for preparation nanocomposites which can avoid the agglomeration of nanoparticles in polymer matrices and improve the interfacial interaction between nanofiller and polymer matrix. The obtained results have shown also that due to the presence of functional groups on GO surface the interactions with PET matrix can be stronger than in the case of exfoliated graphene (EG) and matrix.


2021 ◽  
Vol 1035 ◽  
pp. 918-924
Author(s):  
Teng Zhang ◽  
Su Mei Zheng

Serial poly (lactic acid) (PLA) and thermoplastic starch (TPS) blends (with a fixed content of 20 wt.% TPS) were prepared by melt extrusion process. The effect of different molecular weight of PEG on the thermal and rheological properties of PLA/TPS blends was studied by the melt flow rate (MFR) and DSC analysis. The results showed that the molecular weight of PEG influenced the miscibility and crystallization behavior of PLA/TPS blends. Blend added with PEG400 showed a single Tg, and blends with PEG600 provided remarkable improvement of rheological properties with an increase in flow rate to 49.02 g/10 min. 4% content of poly (ethylene glycol) (PEG) can positively contribute to improve crystallization rate of PLA by reducing the melting temperature and cold crystallization temperature.


Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 31
Author(s):  
Ting-Chia Hsu ◽  
Li-Ting Lee ◽  
Xin-Yun Wu

In this study, the novel ternary green polymer composites of poly(l-lactic acid) (PLLA)/poly(ethylene adipate)/hexagonal boron nitride (PLLA/PEA/h-BN) were synthesized and prepared. The crystallization rate of the biodegradable polymer PLLA in the composite was significantly increased with the addition of PEA and functional h-BN. In ternary PLLA/PEA/h-BN composites, PEA can be used as a plasticizer, while h-BN is a functional nucleation agent for PLLA. The analysis of the isothermal crystallization kinetics by the Avrami equation shows that the rate constant k of the ternary PLLA/PEA/h-BN composite represents the highest value, indicating the highest crystallization in the ternary composite. Adding h-BN in the composite can further increase the k value and increase the crystallization rate. Polarized optical microscopy (POM) images reveal that h-BN is an effective nucleation agent that increases the nucleation density of composites. Analysis of wide-angle X-ray diffraction (WAXD) further confirmed that the crystalline structures of PLLA were unchanged by the addition of PEA and h-BN. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that the h-BN particles are uniformly distributed in the composite. The distribution of h-BN having a particle size of a few hundred nm causes an effective nucleation effect and promotes the crystallization of the ternary composites.


1993 ◽  
Vol 321 ◽  
Author(s):  
Veronika E. Reinsch ◽  
Ludwig Rebenfeld

ABSTRACTBlends of poly (ethylene terephthalate), or PET, and polycarbonate (PC) over a range of compositions were studied in isothermal crystallizations from the melt using differential scanning calorimetry (DSC). Both crystallization rate and degree of crystallinity of PET depend on blend composition. The glass transition temperature, Tg, of PET and PC in blends and pure polymer were also measured by DSC. Elevation of the Tg of PET and depression of the Tg of PC are observed upon blending. In cooling scans, dynamic crystallization from the melt was observed. In PET/PC blends with high PC content, a novel dual-peak crystallization of PET was observed. The effects of thermal history on crystallization kinetics and degree of crystallinity were also determined in isothermal crystallization studies. For Melt processing times between 1 and 30 Min and for processing temperatures between 280 and 300 °C, Melt processing temperature was seen to have a stronger effect than processing time.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3713
Author(s):  
Xiaodong Li ◽  
Meishuai Zou ◽  
Lisha Lei ◽  
Longhao Xi

The non-isothermal crystallization behaviors of poly (ethylene glycol) (PEG) and poly (ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) were investigated through a commercially available chip-calorimeter Flash DSC2+. The non-isothermal crystallization data under different cooling rates were analyzed by the Ozawa model, modified Avrami model, and Mo model. The results of the non-isothermal crystallization showed that the PCL block crystallized first, followed by the crystallization of the PEG block when the cooling rate was 50–100 K/s. However, only the PEG block can crystallize when the cooling rate is 200–600 K/s. The crystallization of PEG-PCL is completely inhibited when the cooling rate is 1000 K/s. The modified Avrami and Ozawa models were found to describe the non-isothermal crystallization processes well. The growth methods of PEG and PEG-PCL are both three-dimensional spherulitic growth. The Mo model shows that the crystallization rate of PEG is greater than that of PEG-PCL.


Sign in / Sign up

Export Citation Format

Share Document