In vitro DNA damage characterisation studies on plasmid pBR322 after exposure to γ radiation by 60Co

2011 ◽  
Vol 291 (3) ◽  
pp. 661-664 ◽  
Author(s):  
Vedansha Jaiswal ◽  
Pragati Misra ◽  
P. K. Shukla ◽  
P. W. Ramteke ◽  
A. B. Tiku
2002 ◽  
Vol 43 (2) ◽  
pp. 153-153 ◽  
Author(s):  
REMA RAJAGOPALAN ◽  
KHALIDA WANI ◽  
NAGARAJ G. HUILGOL ◽  
TSUTOMU V. KAGIYA ◽  
CHERUPALLY K. KRISHNAN NAIR

Blood ◽  
2005 ◽  
Vol 106 (13) ◽  
pp. 4131-4138 ◽  
Author(s):  
Miriam Erlacher ◽  
Ewa M. Michalak ◽  
Priscilla N. Kelly ◽  
Verena Labi ◽  
Harald Niederegger ◽  
...  

Numerous p53 target genes have been implicated in DNA damage–induced apoptosis signaling, but proapoptotic Bcl-2 (B-cell leukemia 2) family members of the BH3 (Bcl-2 homolog region [BH] 3)–only subgroup appear to play the critical initiating role. In various types of cultured cells, 3 BH3-only proteins, namely Puma (p53 up-regulated modulator of apoptosis), Noxa, and Bim (Bcl-2 interacting mediator of cell death), have been shown to initiate p53-dependent as well as p53-independent apoptosis in response to DNA damage and treatment with anticancer drugs or glucocorticoids. In particular, the absence of Puma or Bim renders thymocytes and mature lymphocytes refractory to varying degrees to death induced in vitro by growth factor withdrawal, DNA damage, or glucocorticoids. To assess the in vivo relevance of these findings, we subjected mice lacking Puma, Noxa, or Bim to whole-body γ-radiation or the glucocorticoid dexamethasone and compared lymphocyte survival with that in wild-type and BCL2–transgenic mice. Absence of Puma or Bcl-2 overexpression efficiently protected diverse types of lymphocytes from the effects of γ-radiation in vivo, and loss of Bim provided lower but significant protection in most lymphocytes, whereas Noxa deficiency had no impact. Furthermore, both Puma and Bim were found to contribute significantly to glucocorticoid-induced killing. Our results thus establish that Puma and Bim are key initiators of γ-radiation– and glucocorticoid-induced apoptosis in lymphoid cells in vivo.


2017 ◽  
Vol 6 (7) ◽  
pp. 469-478 ◽  
Author(s):  
Joanna Klubo-Gwiezdzinska ◽  
John Costello ◽  
Kirk Jensen ◽  
Aneeta Patel ◽  
Rok Tkavc ◽  
...  

Background Amifostine is a potent scavenger of reactive oxygen species that is used for the salivary gland protection during therapy with radioactive iodine for thyroid cancer. There are no data on the potential effect of amifostine on thyroid cancer cells. Methods We investigated the effects of the active form of amifostine (WR-1065) on the response of thyroid cancer cells to treatment with DNA-damaging agents. WR-1065 was examined in human thyroid cancer cell lines (FTC133, TPC1, BCPAP and C643) and embryonic fibroblast cells NIH3T3. DNA damage was induced by exposure to H2O2 (0.1 mM), by treatment with the radiomimetic neocarzinostatin (NCS 250 ng/mL) and by γ-radiation (6 Gy). DNA damage, cell viability and apoptosis were examined. Results We demonstrated the selective action of WR-1065 (0.1 mM), which prevented oxidative stress–induced DNA damage in fibroblasts, but did not protect thyroid cancer cells from DNA damage and apoptosis documented by caspase-3 and PARP cleavage after exposure to H2O2, NCS and γ-radiation. Prolonged exposure to WR-1065 (0.1 mM for 24 h) was toxic for thyroid cancer cells; this treatment decreased the number of viable cells by 8% in C643 cells, 47% in TPC cells, 92% in BCPAP cells and 82% in FTC 133 cells. The cytotoxic effects of WR-1065 were not associated with induction of apoptosis. Conclusions Our data show that amifostine has no protective effect on thyroid cancer cells against DNA-damaging agents in vitro and suggest that amifostine will not attenuate the efficacy of radioiodine treatment in patients with thyroid cancer.


2010 ◽  
Vol 49 (S 01) ◽  
pp. S64-S68
Author(s):  
E. Dikomey

SummaryIonising irradiation acts primarily via induction of DNA damage, among which doublestrand breaks are the most important lesions. These lesions may lead to lethal chromosome aberrations, which are the main reason for cell inactivation. Double-strand breaks can be repaired by several different mechanisms. The regulation of these mechanisms appears be fairly different for normal and tumour cells. Among different cell lines capacity of doublestrand break repair varies by only few percents and is known to be determined mostly by genetic factors. Knowledge about doublestrand break repair mechanisms and their regulation is important for the optimal application of ionising irradiation in medicine.


2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


2021 ◽  
Vol 22 (11) ◽  
pp. 5782
Author(s):  
Ashwini Makhale ◽  
Devathri Nanayakkara ◽  
Prahlad Raninga ◽  
Kum Kum Khanna ◽  
Murugan Kalimutho

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer lacking targeted therapy. Here, we evaluated the anti-cancer activity of APR-246, a P53 activator, and CX-5461, a RNA polymerase I inhibitor, in the treatment of TNBC cells. We tested the efficacy of individual and combination therapy of CX-5461 and APR-246 in vitro, using a panel of breast cancer cell lines. Using publicly available breast cancer datasets, we found that components of RNA Pol I are predominately upregulated in basal-like breast cancer, compared to other subtypes, and this upregulation is associated with poor overall and relapse-free survival. Notably, we found that the treatment of breast cancer cells lines with CX-5461 significantly hampered cell proliferation and synergistically enhanced the efficacy of APR-246. The combination treatment significantly induced apoptosis that is associated with cleaved PARP and Caspase 3 along with Annexin V positivity. Likewise, we also found that combination treatment significantly induced DNA damage and replication stress in these cells. Our data provide a novel combination strategy by utilizing APR-246 in combination CX-5461 in killing TNBC cells that can be further developed into more effective therapy in TNBC therapeutic armamentarium.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 366
Author(s):  
Valeria Guidolin ◽  
Erik S. Carlson ◽  
Andrea Carrà ◽  
Peter W. Villalta ◽  
Laura A. Maertens ◽  
...  

Alcohol consumption is a risk factor for the development of several cancers, including those of the head and neck and the esophagus. The underlying mechanisms of alcohol-induced carcinogenesis remain unclear; however, at these sites, alcohol-derived acetaldehyde seems to play a major role. By reacting with DNA, acetaldehyde generates covalent modifications (adducts) that can lead to mutations. Previous studies have shown a dose dependence between levels of a major acetaldehyde-derived DNA adduct and alcohol exposure in oral-cell DNA. The goal of this study was to optimize a mass spectrometry (MS)-based DNA adductomic approach to screen for all acetaldehyde-derived DNA adducts to more comprehensively characterize the genotoxic effects of acetaldehyde in humans. A high-resolution/-accurate-mass data-dependent constant-neutral-loss-MS3 methodology was developed to profile acetaldehyde-DNA adducts in purified DNA. This resulted in the identification of 22 DNA adducts. In addition to the expected N2-ethyldeoxyguanosine (after NaBH3CN reduction), two previously unreported adducts showed prominent signals in the mass spectra. MSn fragmentation spectra and accurate mass were used to hypothesize the structure of the two new adducts, which were then identified as N6-ethyldeoxyadenosine and N4-ethyldeoxycytidine by comparison with synthesized standards. These adducts were quantified in DNA isolated from oral cells collected from volunteers exposed to alcohol, revealing a significant increase after the exposure. In addition, 17 of the adducts identified in vitro were detected in these samples confirming our ability to more comprehensively characterize the DNA damage deriving from alcohol exposures.


Sign in / Sign up

Export Citation Format

Share Document