Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors

2010 ◽  
Vol 55 (3) ◽  
pp. 322-327 ◽  
Author(s):  
Y. Wang ◽  
S. W. Liu ◽  
X. W. Sun ◽  
J. L. Zhao ◽  
G. K. L. Goh ◽  
...  
2018 ◽  
Vol 6 (6) ◽  
pp. 1393-1398 ◽  
Author(s):  
Shengbin Nie ◽  
Ao Liu ◽  
You Meng ◽  
Byoungchul Shin ◽  
Guoxia Liu ◽  
...  

In this study, transparent p-type CuCrxOy semiconductor thin films were fabricated using spin coating and integrated as channel layers in thin-film transistors (TFTs).


RSC Advances ◽  
2018 ◽  
Vol 8 (60) ◽  
pp. 34215-34223
Author(s):  
So-Yeong Na ◽  
Sung-Min Yoon

Oxide thin films transistors (TFTs) with Hf and Al co-incorporated ZnO active channels prepared by atomic-layer deposition are presented.


2019 ◽  
Vol 493 ◽  
pp. 63-69 ◽  
Author(s):  
Jin-hua Ren ◽  
Yu-ting Huang ◽  
Kai-wen Li ◽  
Jie Shen ◽  
Wan-yu Zeng ◽  
...  

2006 ◽  
Vol 937 ◽  
Author(s):  
Yutaka Natsume ◽  
Takashi Minakata

ABSTRACTWe have succeeded in developing a simple solution process of pentacene thin films without particular precursor materials. High crystallinity and large plate-like grains of the solution-processed thin films were observed with several analyses. The solution-processed pentacene thin-film transistors (TFTs) were also fabricated and exhibited good transfer characteristics with maximum carrier mobility above 1 cm2/Vs. The solution-processed TFTs also indicated a steep subthreshold swing and high stability of the threshold voltage against the storage in the atmosphere. The trap states and the bulk carrier density in the films were evaluated from the transfer characteristics by using the analytical model. We considered that these good properties could be attributed to the high crystallinity and the large grains of the solution-processed thin films.


2017 ◽  
Vol 5 (2) ◽  
pp. 339-349 ◽  
Author(s):  
Sung Woon Cho ◽  
Da Eun Kim ◽  
Won Jun Kang ◽  
Bora Kim ◽  
Dea Ho Yoon ◽  
...  

The chemical durability of solution-processed oxide films was engineered via Sn-incorporation and thermal-treatment, which was applied for large-area TFT circuit integration.


2015 ◽  
Vol 25 (17) ◽  
pp. 2564-2572 ◽  
Author(s):  
Guoxia Liu ◽  
Ao Liu ◽  
Huihui Zhu ◽  
Byoungchul Shin ◽  
Elvira Fortunato ◽  
...  

2016 ◽  
Vol 4 (20) ◽  
pp. 4478-4484 ◽  
Author(s):  
Ao Liu ◽  
Guoxia Liu ◽  
Huihui Zhu ◽  
Byoungchul Shin ◽  
Elvira Fortunato ◽  
...  

Eco-friendly IWO thin films are fabricated via a low-cost solution process and employed as channel layers in thin-film transistors.


2016 ◽  
Vol 4 (10) ◽  
pp. 2072-2078 ◽  
Author(s):  
Yuzhi Li ◽  
Linfeng Lan ◽  
Peng Xiao ◽  
Zhenguo Lin ◽  
Sheng Sun ◽  
...  

Facile patterning of chloride-based precursor films for low-temperature, high performance indium oxide thin-film transistors.


2021 ◽  
Vol 59 (3) ◽  
pp. 162-167
Author(s):  
Jae Young Kim ◽  
Geonoh Choe ◽  
Tae Kyu An ◽  
Yong Jin Jeong

Solution-processed zinc tin oxide (ZTO) thin-film transistors (TFTs) have great potential uses in next-generation wearable and flexible electronic products. Zinc and tin precursor materials are naturally abundant and have low fabrication costs. To integrate a single ZTO TFT into logic circuits including inverters, NAND, and NOR gates will require the development of a facile patterning process to replace conventional and complicated photolithography techniques which are usually time-consuming and toxic. In this study, self-patterned ZTO thin films were prepared using a photo-patternable precursor solution including a photoacid generator, (4-methylthiophenyl)methyl phenyl sulfonium triflate. Solution-processed ZTO precursor films fabricated with the photoacid generator were successfully micropatterned by UV exposure, and transitioned to a semiconducting ZTO thin film by heat treatment. The UV-irradiated precursor films became insoluble in developing solvent as the generated proton from the photoacid generator affected the metal-containing ligand and changed the solubility of the metal oxide precursors. The resulting ZTO thin films were utilized as the active layers of n-type TFTs, which exhibited a typical n-type transfer, and output characteristics with appropriate threshold voltage, on/off current ratio, and field-effect mobility. We believe that our work provides a convenient solution-based route to the fabrication of metal-oxide semiconductor patterns.


Sign in / Sign up

Export Citation Format

Share Document