Growth factor receptor bound protein-7 regulates proliferation, cell cycle, and mitochondrial apoptosis of thyroid cancer cells via MAPK/ERK signaling

2020 ◽  
Vol 472 (1-2) ◽  
pp. 209-218
Author(s):  
Haili Tang ◽  
Ping Yang ◽  
Xiaojun Yang ◽  
Shujia Peng ◽  
Xi’e Hu ◽  
...  
2014 ◽  
Vol 99 (7) ◽  
pp. E1163-E1172 ◽  
Author(s):  
Wei Qiang ◽  
Yuan Zhao ◽  
Qi Yang ◽  
Wei Liu ◽  
Haixia Guan ◽  
...  

Context: ZIC1 has been reported to be overexpressed and plays an oncogenic role in some brain tumors, whereas it is inactivated by promoter hypermethylation and acts as a tumor suppressor in gastric and colorectal cancers. However, until now, its biological role in thyroid cancer remains totally unknown. Objectives: The aim of this study is to explore the biological functions and related molecular mechanism of ZIC1 in thyroid carcinogenesis. Setting and Design: Quantitative RT-PCR (qRT-PCR) was performed to evaluate mRNA expression of investigated genes. Methylation-specific PCR was used to analyze promoter methylation of the ZIC1 gene. The functions of ectopic ZIC1 expression in thyroid cancer cells were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. Results: ZIC1 was frequently down-regulated by promoter hypermethylation in both primary thyroid cancer tissues and thyroid cancer cell lines. Moreover, our data showed that ZIC1 hypermethylation was significantly associated with lymph node metastasis in patients with papillary thyroid cancer. Notably, restoration of ZIC1 expression in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrest and apoptosis by blocking the activities of the phosphatidylinositol-3-kinase (PI3K)/Akt and RAS/RAF/MEK/ERK (MAPK) pathways, and enhancing FOXO3a transcriptional activity. Conclusions: Our data demonstrate that ZIC1 is frequently inactivated by promoter hypermethyaltion and functions as a tumor suppressor in thyroid cancer through modulating PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a.


2008 ◽  
Vol 93 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Audrey J. Robinson-White ◽  
Hui-Pin Hsiao ◽  
Wolfgang W. Leitner ◽  
Elizabeth Greene ◽  
Andrew Bauer ◽  
...  

Abstract Purpose: Protein kinase A (PKA) affects cell proliferation in many cell types and is a potential target for cancer treatment. PKA activity is stimulated by cAMP and cAMP analogs. One such substance, 8-Cl-cAMP, and its metabolite 8-Cl-adenosine (8-Cl-ADO) are known inhibitors of cancer cell proliferation; however, their mechanism of action is controversial. We have investigated the antiproliferative effects of 8-Cl-cAMP and 8-CL-ADO on human thyroid cancer cells and determined PKA’s involvement. Experimental Design: We employed proliferation and apoptosis assays and PKA activity and cell cycle analysis to understand the effect of 8-Cl-ADO and 8-Cl-cAMP on human thyroid cancer and HeLa cell lines. Results: 8-Cl-ADO inhibited proliferation of all cells, an effect that lasted for at least 4 d. Proliferation was also inhibited by 8-Cl-cAMP, but this inhibition was reduced by 3-isobutyl-1-methylxanthine; both drugs stimulated apoptosis, and 3-isobutyl-1-methylxanthine drastically reduced 8-Cl-cAMP-induced cell death. 8-Cl-ADO induced cell accumulation in G1/S or G2/M cell cycle phases and differentially altered PKA activity and subunit levels. PKA stimulation or inhibition and adenosine receptor agonists or antagonists did not significantly affect proliferation. Conclusions: 8-Cl-ADO and 8-Cl-cAMP inhibit proliferation, induce cell cycle phase accumulation, and stimulate apoptosis in thyroid cancer cells. The effect of 8-Cl-cAMP is likely due to its metabolite 8-Cl-ADO, and PKA does not appear to have direct involvement in the inhibition of proliferation by 8-Cl-ADO. 8-Cl-ADO may be a useful therapeutic agent to be explored in aggressive thyroid cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhen Cheng ◽  
Shuang Yu ◽  
Weiman He ◽  
Jie Li ◽  
Tianyi Xu ◽  
...  

Thyroid cancer is the most common endocrine malignancy, and its incidence has increased in the past decades. Selenium has been shown to have therapeutic effects against several tumors. However, its role in thyroid cancer and its underlying molecular mechanism remains to be explored. In the present study, we demonstrated that sodium selenite significantly decreased cell viability and induced G0/G1 cell cycle arrest and apoptosis in thyroid cancer cells in a dose-dependent manner. Transcriptomics revealed that sodium selenite induced intracellular reactive oxygen species (ROS) by promoting oxidative phosphorylation. Increased intracellular ROS levels inhibited the AKT/mTOR signaling pathway and upregulated EIF4EBP3. Intracellular ROS inhibition by N-acetylcysteine (NAC) ameliorated the cellular effects of sodium selenite. The in vitro findings were reproduced in xenograft thyroid tumor models. Our data demonstrated that sodium selenite exhibits strong anticancer effects against thyroid cancer cells, which involved ROS-mediated inhibition of the AKT/mTOR pathway. This suggests that sodium selenite may serve as a therapeutic option for advanced thyroid cancer.


2005 ◽  
Vol 90 (3) ◽  
pp. 1383-1389 ◽  
Author(s):  
Maria G. Catalano ◽  
Nicoletta Fortunati ◽  
Mariateresa Pugliese ◽  
Lucia Costantino ◽  
Roberta Poli ◽  
...  

2020 ◽  
Author(s):  
Jingni He ◽  
Ying Zhang ◽  
Lidong Wang ◽  
Yifang Yu ◽  
Baiyu Yao ◽  
...  

Abstract BackgroundThyroid cancer is the most common endocrine tumor and typically has a good prognosis; however, some patients still present with local or distant metastases. Huaier is a traditional Chinese medicine reported as effective in treating certain types of tumor, but the effect of Huaier on thyroid cancer has not yet been reported. MethodsThe thyroid cancer cell lines, B-CPAP and C643, were treated with increasing concentrations of Huaier extract and the therapeutic effect was measured using a cell counting kit 8 (CCK-8) and flow cytometry. High-throughput sequencing was further performed to identify differentially expressed genes (DEGs) in Huaier-treated B-CPAP cells. Moreover, quantitative real-time PCR (RT-qPCR) was carried out to verify the selected RNAs. Finally, the dual luciferase detection kit was used to detect gene activity.ResultsProliferation of B-CPAP and C643 cells was significantly suppressed by treatment with Huaier extract in a concentration- and time-dependent manner. Huaier extract also induced cell cycle arrest and apoptosis according to flow cytometry (p < 0.05).High-throughput sequencing observed 7,979 significantly altered transcripts. Gene Ontology (GO) analysis showed that 270 genes were enriched in upregulated terms, while 171 genes were enriched in downregulated terms (p < 0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that there were 47 enriched pathways associated with DEGs (p < 0.05). The expression levels of chosen lncRNAs (SNHG7, MIR181A2HG, ILF3-AS1, and CTA-29F11.1) and their corresponding mRNAs (BBC3, CTSL, GADD45A, and DDIT3) were verified to be overexpressed in Huaier-treated B-CPAP cells by RT-qPCR (p < 0.05).Following transduction, the CCK-8 results showed that the proliferative capacity was increased in the shRNA group as compared with that in the Ctrl and Scr groups. According to flow cytometry, the number of cells in the G0/G1 phase was decreased in the shRNA group (p < 0.01) and the apoptosis rate was lower (p < 0.05). The shRNA-treated group had significantly reduced Huaier-induced apoptosis as compared with the Scr-treated group (p < 0.05). Moreover, the number of cells in the G0/G1 phase in the shRNA-treated group was significantly lower than that in the Scr-treated group (p < 0.05). The results of the dual luciferase reporter gene experiment showed that the activity in the GADD45A WT + miR-301a-3p(+) group was significantly reduced as compared with that in the GADD45A WT + miR-301a-3p(+) NC group (p < 0.01). Further, the activity in the ILF3-AS1 WT + miR-301a-3p(+) group was significantly lower than that in the ILF3-AS1 WT + miR-301a-3p(+) NC group (p < 0.05).ConclusionsThe present study demonstrates that Huaier extract inhibits the proliferation of thyroid cancer cells via changes in the expression levels of a multitude of genes. In particular, a decrease in GADD45A expression enhances the proliferative ability of thyroid cancer cells, the levels of which can be increased by Huaier treatment, thus regulating the cell cycle and apoptosis. Huaier can inhibit the proliferation of thyroid cancer cells through the ILF3-AS1/hsa-miR-301a-3p/GADD45A ceRNA axis.


Sign in / Sign up

Export Citation Format

Share Document