Identification of differentially expressed genes in ovaries of chicken attaining sexual maturity at different ages

2011 ◽  
Vol 39 (3) ◽  
pp. 3037-3045 ◽  
Author(s):  
Li Kang ◽  
Yujie Zhang ◽  
Ningbo Zhang ◽  
Li Zang ◽  
Meng Wang ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhong-Fang Liu ◽  
Yao-yao Liang ◽  
Xiao-ting Sun ◽  
Jing Yang ◽  
Peng-Jiu Zhang ◽  
...  

Abstract The lacewing Chrysoperla sinica (Tjeder) is a common natural enemy of many insect pests in China and is frequently employed for biological control programs. Adults make migratory flights after emergence, which reduces their effectiveness as biological control agents. Previously, we proved that 2-d-old unmated females exhibited significantly stronger flight ability than 3-d-old ones. Meanwhile, 3-d-old unmated adults flew significantly longer distances than mated ones. In this study, Illumina RNA sequencing was performed to characterize differentially expressed genes (DEGs) between virgin and mated adults of different ages in a single female strain of C. sinica. In total, 713,563,726 clean reads were obtained and de novo assembled into 109,165 unigenes with an average length of 847 bp (N50 of 1,754 bp), among which 4,382 (4.01%) unigenes matched known proteins. Based on these annotations, many putative transcripts were related to C. sinica’s flight capacity and muscle structure, energy supply, growth, development, environmental adaptability, and metabolism of nutritional components and bioactive components. In addition, the differential expression of transcripts between different ages and mating status were analyzed, and DEGs participating in flight capacity and muscles were detected, including glutathione hydrolase, NAD-specific glutamate dehydrogenase, aminopeptidase, and acidic amino acid decarboxylase. The DEGs with functions associated with flight capacity and muscles exhibited higher transcript levels for younger (2 d--old) virgins. This comprehensive C. sinica transcriptomic data provide a foundation for a better understanding of the molecular mechanisms underlying the flight capacity to meet the physiological demands of flight muscles in C. sinica.


2013 ◽  
Vol 38 (1) ◽  
pp. 62-70 ◽  
Author(s):  
Rong-Ping CHEN ◽  
Lie LIU ◽  
Xiu-Qing WAN ◽  
En-Jian QIU ◽  
Chun-Jun WANG ◽  
...  

2020 ◽  
Vol 23 (6) ◽  
pp. 546-553
Author(s):  
Hongyuan Cui ◽  
Mingwei Zhu ◽  
Junhua Zhang ◽  
Wenqin Li ◽  
Lihui Zou ◽  
...  

Objective: Next-generation sequencing (NGS) was performed to identify genes that were differentially expressed between normal thyroid tissue and papillary thyroid carcinoma (PTC). Materials & Methods: Six candidate genes were selected and further confirmed with quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry in samples from 24 fresh thyroid tumors and adjacent normal tissues. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to investigate signal transduction pathways of the differentially expressed genes. Results: In total, 1690 genes were differentially expressed between samples from patients with PTC and the adjacent normal tissue. Among these, SFRP4, ZNF90, and DCN were the top three upregulated genes, whereas KIRREL3, TRIM36, and GABBR2 were downregulated with the smallest p values. Several pathways were associated with the differentially expressed genes and involved in cellular proliferation, cell migration, and endocrine system tumor progression, which may contribute to the pathogenesis of PTC. Upregulation of SFRP4, ZNF90, and DCN at the mRNA level was further validated with RT-PCR, and DCN expression was further confirmed with immunostaining of PTC samples. Conclusion: These results provide new insights into the molecular mechanisms of PTC. Identification of differentially expressed genes should not only improve the tumor signature for thyroid tumors as a diagnostic biomarker but also reveal potential targets for thyroid tumor treatment.


Sign in / Sign up

Export Citation Format

Share Document