scholarly journals Taking Advantage of Overhearing in Low Power Listening WSNs: A Performance Analysis of the LWT-MAC Protocol

2010 ◽  
Vol 16 (5) ◽  
pp. 613-628 ◽  
Author(s):  
Cristina Cano ◽  
Boris Bellalta ◽  
Anna Sfairopoulou ◽  
Miquel Oliver ◽  
Jaume Barceló
Author(s):  
Stefan Mijovic ◽  
Andrea Stajkic ◽  
Riccardo Cavallari ◽  
Chiara Buratti

This paper presents an implementation of a Low Power Listening-based (LPL) Medium Access Control (MAC) protocol on a platform for Body Area Network (BAN) applications. LPL exploits the transmission of a burst of short packets, called preambles, to synchronize the transmitter and the receiver. In this way, devices are able to spend most of the time in sleeping mode, providing longer lifetime and energy saving. Experiments on the field have been conducted by considering different scenarios and results, in terms of average energy consumed per packet transmitted/received, packet loss rate, average delay and network throughput, have been investigated. Conclusions regarding the proper parameters setting depending on the application requirements were derived. This work has been performed in the framework of the FP7 Integrated Project, WiserBAN.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kwang-il Hwang ◽  
Gangman Yi

Even though existing low-power listening (LPL) protocols have enabled ultra-low-power operation in wireless sensor networks (WSN), they do not address trade-off between energy and delay, since they focused only on energy aspect. However, in recent years, a growing interest in various WSN applications is requiring new design factors, such as minimum delay and higher reliability, as well as energy efficiency. Therefore, in this paper we propose a novel sensor multiple access control (MAC) protocol, transmission rate based adaptive low-power listening MAC protocol (TRA-MAC), which is a kind of preamble-based LPL but is capable of controlling preamble sensing cycle adaptively to transmission rates. Through experiments, it is demonstrated that TRA-MAC enables LPL cycle (LC) and preamble transmission length to adapt dynamically to varying transmission rates, compensating trade-off between energy and response time.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

1997 ◽  
Author(s):  
W. Hargus, Jr. ◽  
R. Cedolin ◽  
N. Meezan ◽  
M. Cappelli ◽  
W. Hargus, Jr. ◽  
...  

Author(s):  
Esra Musbah Mohammed Musbah ◽  
Khalid Hamed Bilal ◽  
Amin Babiker A. Nabi Mustafa

VoIP stands for voice over internet protocol. It is one of the most widely used technologies. It enables users to send and transmit media over IP network. The transition from IPv4 to IPv6 provides many benefits for internet IPv6 is more efficient than IPv4. This paper presents a performance analysis of VoIP over WLAN using IPv4 and IPv6 and OPNET software program to simulate the protocols and to investigate the QoS parameters such as jitter, delay variation, packet send, and packet received and throughputs for IP4 and IP6 and compare between them.


Sign in / Sign up

Export Citation Format

Share Document