Rocking dynamics of a planar rectangular block on a rigid surface

2018 ◽  
Vol 45 (1) ◽  
pp. 105-125 ◽  
Author(s):  
Zhen Zhao ◽  
Caishan Liu ◽  
Nannan Wang
1984 ◽  
Vol 106 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Bharat Bhushan

The statistical analysis of the real area of contact proposed by Greenwood and Williamson is revisited. General and simplified equations for the mean asperity real area of contact, number of contacts, total real area of contact, and mean real pressure as a function of apparent pressure for the case of elastic junctions are presented. The critical value of the mean asperity pressure at which plastic flow starts when a polymer contacts a hard material is derived. Based on this, conditions of elastic and plastic junctions for polymers are defined by a “polymer” plasticity index, Ψp which depends on the complex modulus, Poisson’s ratio, yield strength, and surface topography. Calculations show that most dynamic contacts that occur in a computer-magnetic tape are elastic, and the predictions are supported by experimental evidence. Tape wear in computer applications is small and decreases Ψp by less than 10 percent. The theory presented here can also be applied to rigid and floppy disks.


1969 ◽  
Vol 184 (1) ◽  
pp. 69-82 ◽  
Author(s):  
S. M. Ibrahim ◽  
H. Mccallion

Stresses in a bimetal strip of white metal bonded to steel, to simulate a journal bearing shell or a thrust bearing ring, have been calculated for various loading conditions. The stresses arose from: fluid pressure loading on the bearing surface whilst the back was supported on a complete rigid surface; locating and holding forces, e.g. compression due to nipping-up the bearing; elastic deformation of the bearing housing; differential thermal expansion and temperature gradients, and incomplete support of the bearing shell when subjected to fluid pressure on its bearing surface. Points at which fatigue damage is likely to originate are apparent. The stresses were calculated numerically from displacements which were found, by an iterative method, to satisfy a finite difference analogue of the governing differential equations.


Author(s):  
F.M.S. Lima ◽  
G.M. Venceslau ◽  
G.T. Brasil

In hydrostatics, the Archimedes principle predicts an upward force whenever a body is submerged in a liquid. In contrast to common sense, this physical law is not free of exceptions, as for example when the body touches the container. This is more evident when a rectangular block less dense than the liquid rests on the bottom, with no liquid underneath it, a case in which a downward force is expected, according to a recent work by the first author. In the present work, we describe a simple, low-cost experiment which allows the detection of such force. This counterintuitive result shows the inadequacy of Archimedes' principle for treating "contact" cases.


2010 ◽  
Vol 09 (05) ◽  
pp. 399-406 ◽  
Author(s):  
A. A. EL-DALY

In this paper, we report a convenient and informative procedure for detecting the morphology and surface structure of individual gold nanocrystals using digital Crystal Image Software (CIS) processing of transmission electron microscopy (TEM) image, which comprises coalescence phenomena of these nanoparticles. The results show that the internal structure of Au nanoparticles has a core of gold atoms arranged as a Marks decahedron, surrounded by additional gold–organic compound layers forming a rigid surface layer, and its outer layer comprises four staple motif bridge molecules that resemble handles, formed an unusual pattern. The obtained results improved our understanding of the basics of the coalescence phenomena such as the driving mechanisms acting at different particle sizes. However, these discrete natures of the nanoparticles will assist in the understanding of principles of nanocore assembly and opens a new window for nanoparticles chemistry.


1988 ◽  
Vol 110 (4) ◽  
pp. 674-677 ◽  
Author(s):  
M. Carpino ◽  
G. A. Domoto

A rotating flexible disk separated from a rigid flat surface by a gas film is addressed. The gas film between the disk and the plate is represented by an incompressible Reynolds equation. Inertial effects are included. The disk is treated as a membrane where the tension is found from the plane stress solution for a spinning disk. Two different methods for the axisymmetric solution of this system are developed. The first uses the method of matched asymptotic expansions. The second method is a mixed numerical/perturbation procedure.


2021 ◽  
Vol 19 (1) ◽  
pp. 1029-1046
Author(s):  
Abeer H. Bakhsh ◽  
Abdullah A. Abdullah

Abstract A linear stability analysis is performed for the onset of Marangoni convection in a horizontal layer of a nanofluid heated from below and affected by rotation. The top boundary of the layer is assumed to be impenetrable to nanoparticles with their distribution being determined from a conservation condition while the bottom boundary is assumed to be a rigid surface with fixed temperature. The motion of the nanoparticles is characterized by the effects of thermophoresis and Brownian diffusion. A modification model is used in which the effects of Brownian diffusion and thermophoresis are taken into consideration by new expressions in the nanoparticle mass flux. Also, material properties of the nanofluid are modelled by non-constant constitutive expressions depending on nanoparticle volume fraction. The steady-state solution is shown to be well approximated by an exponential distribution of the nanoparticle volume fraction. The Chebyshev-Tau method is used to obtain the critical thermal and nanoparticle Marangoni numbers. Different stability boundaries are obtained using the modified model and the rotation.


Sign in / Sign up

Export Citation Format

Share Document