Mitigation of vortex-induced vibration lock-in using time-delay closed-loop control

2020 ◽  
Vol 100 (2) ◽  
pp. 1441-1456
Author(s):  
Wrik Mallik ◽  
Srimanta Santra
1999 ◽  
Vol 122 (3) ◽  
pp. 454-460 ◽  
Author(s):  
Vikram Kapila ◽  
Anthony Tzes ◽  
Qiguo Yan

Input shaping techniques reduce the residual vibration in flexible structures by convolving the command input with a sequence of impulses. The exact cancellation of the residual structural vibration via input shaping is dependent on the amplitudes and instances of impulse application. A majority of the current input shaping schemes are inherently open-loop where impulse application at inaccurate instances can lead to system performance degradation. In this paper, we develop a closed-loop control design framework for input shaped systems. This framework is based on the realization that the dynamics of input shaped systems give rise to time delays in the input. Thus, we exploit the feedback control theory of time delay systems for the closed-loop control of input shaped flexible structures. A Riccati equation-based and a linear matrix inequality-based frameworks are developed for the stabilization of systems with uncertain, multiple input delays. Next, the aforementioned framework is applied to two input shaped flexible structure systems. This framework guarantees closed-loop system stability and performance when the impulse train is applied at inaccurate instances. Two illustrative numerical examples demonstrate the efficacy of the proposed closed-loop input shaping controller. [S0022-0434(00)00103-9]


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3934
Author(s):  
Viktor Shevchenko ◽  
Bohdan Pakhaliuk ◽  
Janis Zakis ◽  
Oleksandr Veligorskyi ◽  
Jaroslaw Luszcz ◽  
...  

This paper presents an inductive power transfer system on the basis of a double single-phase three-level T-type inverter and two split transmitting coils for constant current and constant voltage wireless charging of low-voltage light electric vehicle batteries with closed-loop control, considering time-delay communication constraints. An optimal control structure and a modified control strategy were chosen and implemented to the wireless power transfer system as a result of a review and analysis of existing solutions. The control system analysis and adjustment of the coefficients of the regulator using Laplace transform were performed. Our study addressed the behavior of the control system with different time delays as well as the dynamic response of the system. The detecting algorithm of a secondary coil was proposed, which ensured efficient system operation and increased the functionality, safety and usability of the device. The efficiency of energy transfer of 90% was reached at the transmitted power of 110 W, which is at the level of existing solutions considered in the article and opens the way to the commercialization of the proposed solution. Therefore, the feasibility of using a nonclassical multilevel inverter, together with split transmitting coils for wireless charging was confirmed.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


Sign in / Sign up

Export Citation Format

Share Document