scholarly journals Robustness of nonlinear parameter identification in the presence of process noise using control-based continuation

Author(s):  
Sandor Beregi ◽  
David A. W. Barton ◽  
Djamel Rezgui ◽  
Simon A. Neild

AbstractIn this study, we consider the experimentally obtained, periodically forced response of a nonlinear structure in the presence of process noise. Control-based continuation is used to measure both the stable and unstable periodic solutions, while different levels of noise are injected into the system. Using these data, the robustness of the control-based continuation algorithm and its ability to capture the noise-free system response are assessed by identifying the parameters of an associated Duffing-like model. We demonstrate that control-based continuation extracts system information more robustly, in the presence of a high level of noise, than open-loop parameter sweeps and so is a valuable tool for investigating nonlinear structures.

2006 ◽  
Vol 13 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Haiqin Chen ◽  
Zhinan Xu ◽  
Naizheng Xu ◽  
Peilin Cen

Author(s):  
Philip Varney ◽  
Itzhak Green

The goal of this work is to establish a condition monitoring regimen capable of diagnosing the depth and location of a transverse fatigue crack in a rotordynamic system. The success of an on-line crack diagnosis regimen hinges on the accuracy of the crack model used. The model should account for the depth of the crack and the localization of the crack along the shaft. Negating the influence of crack location on system response ignores a crucial component of real cracks. Two gaping crack models are presented; the first simulates a finite-width manufactured notch, while the second models an open fatigue crack. An overhung rotordynamic system is modeled, imitating an available rotordynamic test rig. Four degree-of-freedom equations of motion for both crack models are presented and discussed, along with corresponding transfer matrix techniques. Free and forced response analyses are performed, with emphasis placed on results applicable to condition monitoring. It is demonstrated that two identifiers are necessary to diagnose the crack parameters: the 2X resonance frequency and the magnitude of the 2X component of the rotor angular response at resonance. First, a contour plot of the 2X resonant shaft speed versus crack depth and location is generated. The magnitude of the 2X component of the rotor’s angular response along the desired contour is obtained, narrowing the possible pairs of crack location/depth to either one or two possibilities. Practical aspects of the diagnosis procedure are then discussed.


1983 ◽  
Vol 105 (3) ◽  
pp. 606-614 ◽  
Author(s):  
H. D. Nelson ◽  
W. L. Meacham ◽  
D. P. Fleming ◽  
A. F. Kascak

The method of component mode synthesis is developed to determine the forced response of nonlinear, multishaft, rotor-bearing systems. The formulation allows for simulation of system response due to blade loss, distributed unbalance, base shock, maneuver loads, and specified fixed frame forces. The motion of each rotating component of the system is described by superposing constraint modes associated with boundary coordinates and constrained precessional modes associated with internal coordinates. The precessional modes are truncated for each component and the reduced component equations are assembled with the nonlinear supports and interconnections to form a set of nonlinear system equations of reduced order. These equations are then numerically integrated to obtain the system response. A computer program, which is presently restricted to single shaft systems has been written and results are presented for transient system response associated with blade loss dynamics, with squeeze film dampers, and with interference rubs.


Author(s):  
Matias Javier Oliva ◽  
Pablo Andrés García ◽  
Enrique Mario Spinelli ◽  
Alejandro Luis Veiga

<span lang="EN-US">Real-time acquisition and processing of electroencephalographic signals have promising applications in the implementation of brain-computer interfaces. These devices allow the user to control a device without performing motor actions, and are usually made up of a biopotential acquisition stage and a personal computer (PC). This structure is very flexible and appropriate for research, but for final users it is necessary to migrate to an embedded system, eliminating the PC from the scheme. The strict real-time processing requirements of such systems justify the choice of a system on a chip field-programmable gate arrays (SoC-FPGA) for its implementation. This article proposes a platform for the acquisition and processing of electroencephalographic signals using this type of device, which combines the parallelism and speed capabilities of an FPGA with the simplicity of a general-purpose processor on a single chip. In this scheme, the FPGA is in charge of the real-time operation, acquiring and processing the signals, while the processor solves the high-level tasks, with the interconnection between processing elements solved by buses integrated into the chip. The proposed scheme was used to implement a brain-computer interface based on steady-state visual evoked potentials, which was used to command a speller. The first tests of the system show that a selection time of 5 seconds per command can be achieved. The time delay between the user’s selection and the system response has been estimated at 343 µs.</span>


Author(s):  
Nir Ben Shaya ◽  
Izhak Bucher ◽  
Amit Dolev

AbstractDescribed is a closed-loop control scheme capable of stabilizing a parametrically excited nonlinear structure in several vibration modes. By setting the relative phase between the spatially filtered response and the excitation, the open-loop unstable solution branches are stabilized under a 2:1 parametric excitation of a chosen mode of vibration. For a given phase, the closed-loop automatically locks on a limit cycle, through an Autoresonance scheme, at any desired point on the solution branches. Axially driven slender beams and nanowires develop large transverse vibration under suitable amplitudes and frequency base-excitation that are sensitive to small potential coupled field. To utilize such a structure as a sensor, stable and robust operation are made possible by the control scheme. In addition, an optimal operating point with large sensitivity to the sensed potential field can be set using phase as a tunable parameter. Detailed analysis of the dynamical behavior, experimental verifications, and demonstrations sheds light on some features of the system dynamics.


Author(s):  
R. J. Kuether ◽  
L. Renson ◽  
T. Detroux ◽  
C. Grappasonni ◽  
G. Kerschen ◽  
...  

Isolated resonance curves are separate from the main nonlinear forced-response branch, so they can easily be missed by a continuation algorithm and the resonant response might be underpredicted. The present work explores the connection between these isolated resonances and the nonlinear normal modes of the system and adapts an energy balance criterion to connect the two. This approach provides new insights into the occurrence of isolated resonances as well as a method to find an initial guess to compute the isolated resonance curve using numerical continuation. The concepts are illustrated on a finite element model of a cantilever beam with a nonlinear spring at its tip. This system presents jumps in both frequency and amplitude in its response to a swept sinusoidal excitation. The jumps are found to be the result of a modal interaction that creates an isolated resonance curve that eventually merges with the main resonance branch as the excitation force increases. Excellent insight into the observed dynamics is provided with the NNM theory, which supports that NNMs can also be a useful tool for predicting isolated resonance curves and other behaviors in the damped, forced response.


Author(s):  
Thomas Smith ◽  
Vidya K. Nandikolla

In the sport of basketball, it is important to practice shooting the ball to develop the skill of making the shot in the basket at a high efficiency. Making shots at a high efficiency allows the player to succeed at a high level in the sport. The main focus of the paper describes the design and development of an automatic basketball rebound (ABR) system. The developed ABR provides a system that will launch the ball back to the player at any position on the court within a 50-foot radius. This is accomplished by a variable spring loaded launching mechanism that will compress a spring, depending on the players location, to generate the appropriate force required to launch the ball back to the player. The novel launching mechanism developed is mounted to a rotary table that ensures the launching mechanism is in the correct orientation with the player once the ball is launched. The player is outfitted with an inertial measurement unit to track their position using a method known as dead reckoning. This information is relayed back to a microcontroller that determines the system response. The ABR system is made from lightweight materials and is compact such that it is easy to move around compared to its predecessors.


Author(s):  
Joel M. Haynes ◽  
Gavin J. Hendricks ◽  
Alan H. Epstein

A three-stage, low speed axial research compressor has been actively stabilized by damping low amplitude circumferentially travelling waves which can grow into rotating stall. Using a circumferential array of hot wire sensors, and an array of high speed individually positioned control vanes as the actuator, the first and second spatial harmonics of the compressor were stabilized down to a characteristic slope of 0.9, yielding an 8% increase in operating flow range. Stabilization of the third spatial harmonic did not alter the stalling flow coefficient. The actuators were also used open loop to determine the forced response behavior of the compressor. A system identification procedure applied to the forced response data then yielded the compressor transfer function. The Moore-Greitzer, 2-D, stability model was modified as suggested by the measurements to include the effect of blade row time lags on the compressor dynamics. This modified Moore-Greitzer model was then used to predict both the open and closed loop dynamic response of the compressor. The model predictions agreed closely with the experimental results. In particular, the model predicted both the mass flow at stall without control and the design parameters needed by, and the range extension realized from, active control.


1989 ◽  
Vol 111 (2) ◽  
pp. 160-171 ◽  
Author(s):  
L. Silverberg ◽  
S. Kang

A new modal identification method for Conservative Nongyroscopic Systems is proposed. The modal identification method is formulated as a variational problem in which stationary values of a functional quotient are sought. The computation of the functional quotient is carried out using a set of admissible functions defined over the spatial domain of the system. Measurements of the free system response at discrete points are carried out using any combination of displacements, velocities, and/or accelerations. Three types of admissible functions have been considered—global functions, spatial Dirac-delta functions, and finite element interpolation functions. The variational modal identification method is applied to a pure bending vibration problem, to a pure longitudinal vibration problem, and to a combined bending and longitudinal vibration problem. The effectiveness of the variational modal identification method using different sets of admissible functions is examined.


2002 ◽  
Vol 124 (3) ◽  
pp. 367-375 ◽  
Author(s):  
E. J. Berger ◽  
C. M. Krousgrill

Massless bilinear hysteresis elements are often used to model frictional energy dissipation in dynamic systems. These quasi-static elements possess only two describing parameters, the damper stiffness and the force at which it slips. Bilinear hysteresis elements capture the qualitative nature of friction-damped forced response, but sometimes have difficulty with quantitative comparisons. This paper examines the performance of massless bilinear hysteresis elements as well as the role of damper mass in energy dissipation, and specifically evaluates its influence on the kinematic state of the damper (pure slip, stick-slip, pure stick). Differences between the massless and non-zero mass case are explored, as are the implications on both damper and system response. The results indicate that even small damper mass can have a qualitative effect on the system response, and provide advantages over the massless case. Further, we develop transition maps, describing damper response kinematics in the damper parameter space, which segment the space into two linear analysis regions (pure slip, pure stick) and one nonlinear analysis region (stick-slip). The results suggest non-zero mass dampers which are tuned as optimal vibration absorbers provide substantial resonance response attenuation and substantially reduce the size of the nonlinear analysis region in the damper parameter space.


Sign in / Sign up

Export Citation Format

Share Document