scholarly journals Formulation of a Sustained Release Docetaxel Loaded Cockle Shell-Derived Calcium Carbonate Nanoparticles against Breast Cancer

2017 ◽  
Vol 34 (6) ◽  
pp. 1193-1203 ◽  
Author(s):  
Nahidah Ibrahim Hammadi ◽  
Yusuf Abba ◽  
Mohd Noor Mohd Hezmee ◽  
Intan Shameha Abdul Razak ◽  
Alhaji Zubair Jaji ◽  
...  
Author(s):  
Maryam Muhammad Mailafiya ◽  
Mohamad Aris Mohd Moklas ◽  
Kabeer Abubakar ◽  
Abubakar Danmaigoro ◽  
Samaila Musa Chiroma ◽  
...  

Background: Cockle shell-derived calcium carbonate nanoparticles (CSCaCO3NP) are natural biogenic inorganic material that is used in drug delivery mainly as a bone-remodeling agent as well as a delivery agent for various therapeutics against bone diseases. Curcumin possess wide safety margin and yet puzzled with the problem of poor bioavailability due to insolubility. Propounding in vitro and in vivo studies on toxicity assessments of newly synthesized nanoparticles are ongoing to overcome some crucial challenges regarding their safety administration. Nanotoxicology has paved ways for concise test protocols to monitor sequential events with regards to possible toxicity of newly synthesized nanomaterials. The development of nanoparticle with no or less toxic effect has gained tremendous attentions. Objective: This study aimed at evaluating the in vitro cytotoxic effect of curcumin-loaded cockle shell-derived calcium carbonate nanoparticles (Cur-CSCaCO3NP) and assessing its biocompatibility on normal cells using standard techniques of WST’s assay. Method: Standard techniques of WST’s assay was used for the evaluation of the biocompatibility and cytotoxicity. Result: The result showed that CSCaCO3NP and Cur-CSCaCO3NP possess minimal toxicity and high biocompatibility on normal cells even at higher dose of 500 µg/ml and 40 µg/ml respectively. Conclusion: CSCaCO3NP can be termed an excellent non-toxic nanocarrier for curcumin delivery. Hence, curcumin loaded cockle shell derived calcium carbonate nanoparticles (Cur-CSCaCO3NP) could further be assessed for various in vivo and in vitro therapeutic applications against various bone related ailments.


2016 ◽  
Vol 4 (34) ◽  
pp. 5650-5653 ◽  
Author(s):  
Yuming Guo ◽  
Weili Jia ◽  
Han Li ◽  
Weike Shi ◽  
Jie Zhang ◽  
...  

Calcium carbonate/folate porous hollow spheres were prepared in a facile manner and used for the targeted delivery and pH-responsive sustained release of anticancer drugs.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kehinde Muibat Ibiyeye ◽  
Sherifat Banke Idris ◽  
Abu Bakar Zakaria Zuki

Abstract Cockle shell-derived aragonite calcium carbonate nanoparticles (CACNP) have demonstrated prospect as nano-sized drug carriers for targeting cancer cells. CACNP is biocompatible, biodegradable and its biomaterial is readily available and is of low cost. In addition, CACNP is highly porous, has a large surface area which confer a high loading capacity. The pH-dependent release properties as well as its potential for surface functionalization with targeting agents make CACNP useful in passive and active targeting of cancer cells and cancer stem cells. In this article, we reviewed the current state of CACNP as nano-sized drug carrier for targeting cancer cells, cancer stem cells and its biocompatibility.


2020 ◽  
Vol 10 (4) ◽  
pp. 518-533 ◽  
Author(s):  
Kehinde M. Ibiyeye ◽  
Abu B.Z. Zuki ◽  
Norshariza Nurdin ◽  
Mokrish Ajat

Background: Cockleshell-derived aragonite calcium carbonate nanoparticles were prepared by the top-down approach for combine delivery of two types of drugs. Objective: The aim of this study was to synthesize and characterize thymoquinone-doxorubicin loaded cockle shell-derived aragonite calcium carbonate nanoparticle. Aragonite calcium carbonate nanoparticles encapsulating thymoquinone and doxorubicin alone were also prepared. Methods: The blank and drug-loaded nanoparticles were characterized by field emission scanning electron microscopy, transmission electron microscopy, Zeta potential, Fourier transformed infrared and X-ray diffraction. Drug delivery properties, in vitro drug release study at pH 7.4, 6 and 4.8, and effect of blank nanoparticles on MCF10A, 3T3, MDA MB231 cells were also analyzed. Results: The blank and drug-loaded nanoparticles were pleomorphic and their sizes varying from 53.65 ± 10.29 nm to 60.49 ± 11.36 nm with an overall negative charge. The entrapment efficiency of thymoquinone and doxorubicin were 41.6 and 95.8, respectively. The FTIR showed little alteration after loading thymoquinone and doxorubicin while XRD patterns revealed no changes in the crystallizations of nanoparticles after drug loading. The drug release kinetics of doxorubicin and thymoquinone from the nanoparticles showed a continuous and gradual release after an initial burst release was observed. At pH 4.8, about 100% of drug release was noticed, 70% at pH 6 while only 50% at pH 7.4. The cell viability was 80% at a concentration of 1000 ug/ml of blank nanoparticle. Conclusion: The cockle shell-derived pH sensitive aragonite calcium carbonate nanoparticle provides an effective and simple means of multiple drug delivery and function as a platform for pH controlled release of loaded therapeutic agents.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abdullahi Shafiu Kamba ◽  
Maznah Ismail ◽  
Tengku Azmi Tengku Ibrahim ◽  
Zuki Abu Bakar Zakaria

The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO3/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO3/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells.In vitrochemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO3/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO3nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy.


2015 ◽  
Vol 804 ◽  
pp. 143-146
Author(s):  
Narumon Lertcumfu ◽  
Parkpoom Jarupoom ◽  
Pongthep Arkornsakul ◽  
Tawee Tunkasiri ◽  
Denis Russell Sweatman ◽  
...  

Calcium phosphate is a biomaterial which exhibits excellent biocompatibility, bioactivity and biodegradability for bone replacement and other medical applications. In the present work, multiphasic calcium phosphate compounds consisting of hydroxyapatite (HAp) and tri-calcium phosphates (TCP) were prepared by a solid state reaction method. Effects of calcium carbonate (CaCO3: ±3-5 wt%) on the properties of the studied powders were investigated where calcium carbonate powder was synthesized from a natural product (cockle shell). The phase formation and morphology of the powders were characterization by many techniques such as XRD, SEM and dynamic light scattering techniques. The results showed that amount of calcium carbonate additive affected on the properties of the studied samples.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Syairah Liyana Mohd Abd Ghafar ◽  
Mohd Zobir Hussein ◽  
Zuki Abu Bakar Zakaria

The development of cockle shell-based calcium carbonate aragonite polymorph nanoparticle synthesis method using the technique of mechanical stirring in the presence of dodecyl dimethyl betaine (BS-12) incorporated with surface functionalization demonstrated high homogeneity of sample product with good nanoparticles dispersion. The cockle shell-based calcium carbonate aragonite nanoparticle with functionalized surface was characterized using transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), particle size distribution, pH measurement analysis, Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). Surface functionalization was proven to improve the overall size and shape of the nanoparticles and enhance their dispersion properties, preventing coarse agglomeration among nanoparticles in general. The improved method was verified to retain its aragonite crystalline nature. Additionally, surface functionalization did not increase the size of nanoparticles throughout the modification process. This facile preparation using naturally occurring cockle shells as the main source is environmentally friendly because it provides relatively low cost of raw material source as it is abundantly available in nature and has good mineral purity content. Hence, high quality production of surface functionalized cockle shell-based calcium carbonate aragonite polymorph nanoparticles can potentially be exploited and produced on a large scale for various industrial applications, especially for biomedical purposes in the near future.


Author(s):  
Polina Demina ◽  
Anatolii Abalymov ◽  
Denis V. Voronin ◽  
Alexander V. Sadovnikov ◽  
Maria Vladimirovna Lomova

Anticancer hybrid mineral highly-magnetic protein-tannin vehicles are tunable and controllable external triggers for drug delivery systems. The saturation level of submicron particles of calcium carbonate with magnetic nanoparticles was achieved....


Sign in / Sign up

Export Citation Format

Share Document