Effects of clover density on N2O emissions and plant-soil N transfers in a fertilised upland pasture

2010 ◽  
Vol 343 (1-2) ◽  
pp. 97-107 ◽  
Author(s):  
Katja Klumpp ◽  
Juliette M. G. Bloor ◽  
Per Ambus ◽  
Jean-François Soussana
2020 ◽  
Vol 2 (1) ◽  
pp. 73-82
Author(s):  
Weiwei Dai ◽  
Edith Bai ◽  
Wei Li ◽  
Ping Jiang ◽  
Guanhua Dai ◽  
...  

Oecologia ◽  
2021 ◽  
Author(s):  
Maria Väisänen ◽  
Maria Tuomi ◽  
Hannah Bailey ◽  
Jeffrey M. Welker

AbstractThe boreal forest consists of drier sunlit and moister-shaded habitats with varying moss abundance. Mosses control vascular plant–soil interactions, yet they all can also be altered by grazers. We determined how 2 decades of reindeer (Rangifer tarandus) exclusion affect feather moss (Pleurozium schreberi) depth, and the accompanying soil N dynamics (total and dissolvable inorganic N, δ15N), plant foliar N, and stable isotopes (δ15N, δ13C) in two contrasting habitats of an oligotrophic Scots pine forest. The study species were pine seedling (Pinus sylvestris L.), bilberry (Vaccinium myrtillus L.), lingonberry (V. vitis-idaea L.), and feather moss. Moss carpet was deeper in shaded than sunlit habitats and increased with grazer exclusion. Humus N content increased in the shade as did humus δ15N, which also increased due to exclusion in the sunlit habitats. Exclusion increased inorganic N concentration in the mineral soil. These soil responses were correlated with moss depth. Foliar chemistry varied due to habitat depending on species identity. Pine seedlings showed higher foliar N content and lower foliar δ15N in the shaded than in the sunlit habitats, while bilberry had both higher foliar N and δ15N in the shade. Thus, foliar δ15N values of co-existing species diverged in the shade indicating enhanced N partitioning. We conclude that despite strong grazing-induced shifts in mosses and subtler shifts in soil N, the N dynamics of vascular vegetation remain unchanged. These indicate that plant–soil interactions are resistant to shifts in grazing intensity, a pattern that appears to be common across boreal oligotrophic forests.


2020 ◽  
Vol 456 (1-2) ◽  
pp. 81-98
Author(s):  
Marcus Schlingmann ◽  
Ursina Tobler ◽  
Bernd Berauer ◽  
Noelia Garcia-Franco ◽  
Peter Wilfahrt ◽  
...  

Abstract Aims Consequences of climate change and land use intensification on the nitrogen (N) cycle of organic-matter rich grassland soils in the alpine region remain poorly understood. We aimed to identify fates of fertilizer N and to determine the overall N balance of an organic-matter rich grassland in the European alpine region as influenced by intensified management and warming. Methods We combined 15N cattle slurry labelling with a space for time climate change experiment, which was based on translocation of intact plant-soil mesocosms down an elevational gradient to induce warming of +1 °C and + 3 °C. Mesocosms were subject to either extensive or intensive management. The fate of slurry-N was traced in the plant-soil system. Results Grassland productivity was very high (8.2 t - 19.4 t dm ha−1 yr−1), recovery of slurry 15N in mowed plant biomass was, however, low (9.6–14.7%), illustrating low fertilizer N use efficiency and high supply of plant available N via mineralization of soil organic matter (SOM). Higher 15N recovery rates (20.2–31.8%) were found in the soil N pool, dominated by recovery in unextractable N. Total 15N recovery was approximately half of the applied tracer, indicating substantial loss to the environment. Overall, high N export by harvest (107–360 kg N ha−1 yr−1) markedly exceeded N inputs, leading to a negative grassland N balance. Conclusions Here provided results suggests a risk of soil N mining in montane grasslands, which increases both under climate change and land use intensification.


2015 ◽  
Vol 12 (23) ◽  
pp. 7299-7313 ◽  
Author(s):  
J. van Lent ◽  
K. Hergoualc'h ◽  
L. V. Verchot

Abstract. Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (104 studies, 392 N2O and 111 NO case studies), we determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (44 studies, 135 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 90) and 1.7 ± 0.5 (n = 36) kg N ha−1 yr−1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better with the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3− / [NO3−+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not increase significantly overall as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen availability and WFPS were the main factors explaining changes in N2O emissions following LUC, therefore it is important that experimental designs monitor their spatio-temporal variation. Gaps in the literature on N oxide fluxes included geographical gaps (Africa, Oceania) and LU gaps (degraded forest, wetland (notably peat) forest, oil palm plantation and soy cultivation).


Soil Research ◽  
2008 ◽  
Vol 46 (1) ◽  
pp. 76 ◽  
Author(s):  
H. J. Di ◽  
K. C. Cameron

A field lysimeter study was conducted to determine the sources of N2O emitted following the application of dairy cow urine and urea fertiliser labelled with 15N, with and without a nitrification inhibitor, dicyandiamide (DCD). The results show that the application of cow urine at 1000 kg N/ha significantly increased N2O emissions above that from urea applied alone at 25 kg N/ha. The application of urine seemed to have a priming effect, increasing N2O emissions from the soil N pool. Treating the soil with DCD significantly (P < 0.05) decreased N2O emissions from the urine-applied treatment by 72%. The percentage of N2O-N derived from the applied N was 53.1% in the urine-applied treatment and this was reduced to 29.9% when DCD was applied. On average, about 43% of the N2O emitted in the urine-applied treatments was from nitrification. The application of DCD did not have a major effect on the relative contributions of nitrification and denitrification to N2O emissions in the urine treatments. This indicates that the DCD nitrification inhibitor decreased the contributions to N2O emissions from both nitrification and denitrification.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 606
Author(s):  
Marcus Zistl-Schlingmann ◽  
Steve Kwatcho Kengdo ◽  
Ralf Kiese ◽  
Michael Dannenmann

The consequences of land use intensification and climate warming on productivity, fates of fertilizer nitrogen (N) and the overall soil N balance of montane grasslands remain poorly understood. Here, we report findings of a 15N slurry-tracing experiment on large grassland plant–soil lysimeters exposed to different management intensities (extensive vs. intensive) and climates (control; translocation: +2 °C, reduced precipitation). Surface-applied cattle slurry was enriched with both 15NH4+ and 15N-urea in order to trace its fate in the plant–soil system. Recovery of 15N tracer in plants was low (7–17%), while it was considerably higher in the soil N pool (32–42%), indicating N stabilization in soil organic nitrogen (SON). Total 15N recovery was only 49% ± 7% indicating substantial fertilizer N losses to the environment. With harvest N exports exceeding N fertilization rates, the N balance was negative for all climate and management treatments. Intensive management had an increased deficit relative to extensive management. In contrast, simulated climate change had no significant effects on the grassland N balance. These results suggest a risk of soil N mining in montane grasslands under land use intensification based on broadcast liquid slurry application.


2015 ◽  
Vol 15 (7) ◽  
pp. 1538-1548 ◽  
Author(s):  
Yu Xie ◽  
Jinbo Zhang ◽  
Lei Meng ◽  
Christoph Müller ◽  
Zucong Cai

2018 ◽  
Vol 15 (22) ◽  
pp. 7043-7057 ◽  
Author(s):  
Martin Ley ◽  
Moritz F. Lehmann ◽  
Pascal A. Niklaus ◽  
Jörg Luster

Abstract. Semi-terrestrial soils such as floodplain soils are considered potential hot spots of nitrous oxide (N2O) emissions. Microhabitats in the soil – such as within and outside of aggregates, in the detritusphere, and/or in the rhizosphere – are considered to promote and preserve specific redox conditions. Yet our understanding of the relative effects of such microhabitats and their interactions on N2O production and consumption in soils is still incomplete. Therefore, we assessed the effect of aggregate size, buried leaf litter, and plant–soil interactions on the occurrence of enhanced N2O emissions under simulated flooding/drying conditions in a mesocosm experiment. We used two model soils with equivalent structure and texture, comprising macroaggregates (4000–250 µm) or microaggregates (<250 µm) from a N-rich floodplain soil. These model soils were planted with basket willow (Salix viminalis L.), mixed with leaf litter or left unamended. After 48 h of flooding, a period of enhanced N2O emissions occurred in all treatments. The unamended model soils with macroaggregates emitted significantly more N2O during this period than those with microaggregates. Litter addition modulated the temporal pattern of the N2O emission, leading to short-term peaks of high N2O fluxes at the beginning of the period of enhanced N2O emission. The presence of S. viminalis strongly suppressed the N2O emission from the macroaggregate model soil, masking any aggregate-size effect. Integration of the flux data with data on soil bulk density, moisture, redox potential and soil solution composition suggest that macroaggregates provided more favourable conditions for spatially coupled nitrification–denitrification, which are particularly conducive to net N2O production. The local increase in organic carbon in the detritusphere appears to first stimulate N2O emissions; but ultimately, respiration of the surplus organic matter shifts the system towards redox conditions where N2O reduction to N2 dominates. Similarly, the low emission rates in the planted soils can be best explained by root exudation of low-molecular-weight organic substances supporting complete denitrification in the anoxic zones, but also by the inhibition of denitrification in the zone, where rhizosphere aeration takes place. Together, our experiments highlight the importance of microhabitat formation in regulating oxygen (O2) content and the completeness of denitrification in soils during drying after saturation. Moreover, they will help to better predict the conditions under which hot spots, and “hot moments”, of enhanced N2O emissions are most likely to occur in hydrologically dynamic soil systems like floodplain soils.


2016 ◽  
Vol 95 ◽  
pp. 288-298 ◽  
Author(s):  
M.R. Redding ◽  
P.R. Shorten ◽  
R. Lewis ◽  
C. Pratt ◽  
C. Paungfoo-Lonhienne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document