scholarly journals Ectomycorrhizal fungal diversity interacts with soil nutrients to predict plant growth despite weak plant-soil feedbacks

2020 ◽  
Vol 453 (1-2) ◽  
pp. 445-458
Author(s):  
Jake Nash ◽  
Roger Laushman ◽  
Christopher Schadt
2016 ◽  
Vol 13 (17) ◽  
pp. 4945-4957 ◽  
Author(s):  
Rémon Saaltink ◽  
Stefan C. Dekker ◽  
Jasper Griffioen ◽  
Martin J. Wassen

Abstract. Interest is growing in using soft sediment as a foundation in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here, dredging some of the clay-rich lake-bed sediment and using it to construct wetland will soon begin. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant–soil feedbacks, we conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling and yellowing of foliage. The N : P ratios of the plant tissue were low, and these were affected not by hampered uptake of N but by enhanced uptake of P. Subsequent analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose the use of Fe-tolerant species rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the situated sediment and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.


2019 ◽  
Author(s):  
Rodrigo Alegria Terrazas ◽  
Senga Robertson-Albertyn ◽  
Aileen Mary Corral ◽  
Carmen Escudero-Martinez ◽  
Katharin Balbirnie-Cumming ◽  
...  

AbstractBackgroundSince the dawn of agriculture, human selection on plants has progressively differentiated input-demanding productive crops from their wild progenitors thriving in marginal areas. Barley (Hordeum vulgare), the fourth most cultivated cereal globally, is a prime example of this process. We previously demonstrated that wild and domesticated barley genotypes host distinct microbial communities in their rhizosphere. Here, we tested the hypothesis that microbiota diversification is modulated by, and responds to, nitrogen (N) application in soil and assessed the impact of microbiota taxonomic and functional compositions on plant growth.MethodsWe grew two wild (H. vulgare ssp. spontaneum) and an ‘Elite’ domesticated (H. vulgare ssp. vulgare) barley genotypes in an agricultural soil treated with and without N inputs. By using a two-pronged 16S rRNA gene amplicon sequencing and comparative metagenomics approach, we determined the impact of N application on taxonomic composition and metabolic potential of the microbial communities exposed to limiting and replete N supplies. We then implemented a plant-soil feedback experiment to assess microbiotas’ recruitment cues and contribution to plant growth.ResultsN availability emerged as a modulator of the recruitment cues of the barley bacterial microbiota as evidenced by the increased number of bacterial genera differentially recruited between unplanted soil and rhizosphere communities under N-limiting conditions. This recruitment pattern mirrored the impact of the host genotype on rhizosphere bacteria. The characterisation of the assembled metagenomes of plants exposed to N-limiting conditions revealed a metabolic specialisation of the rhizosphere microbiota compared to unplanted soil controls. This specialisation is underpinned predominantly by bacteria and is manifested by the enrichment of a core set of biological processes sustaining the adaptation of polymicrobial communities such as N utilisation, quorum sensing and motility across genotypes. The quantitative variation in a group of these biological processes defined host signatures in the barley rhizosphere metagenome. Finally, a plant-soil feedback experiment revealed that the host-mediated taxonomic diversification of the bacterial microbiota is associated with barley growth under sub-optimal N supplies.ConclusionsOur results suggest that under N limiting conditions, a substrate-driven selection process underpins the assembly of barley rhizosphere microbiota. Host-microbe and microbe-microbe interactions fine-tune this process at the taxonomic and functional level across kingdoms. The disruption of these recruitment cues negatively impacts plant growth.


2019 ◽  
Vol 65 (3-4) ◽  
pp. 92-105
Author(s):  
Xinguang Yang ◽  
Xilai Li ◽  
Mingming Shi ◽  
Liqun Jin ◽  
Huafang Sun

Replacement of topsoil to an appropriate depth is one of the key methods for ecological restoration. The objective of this study was to investigate the effects of topsoil replacement depth on vegetation and soil properties, and to identify the optimum soil depth for reclamation of coal mine spoils in a cold alpine mining area. We sowed 3 herbaceous species after coal mine spoil heaps were treated with topsoil to 3 depths (0, 20‒25, 40‒45 cm). The variations in vegetation community structure, plant growth, soil properties were measured at different replaced topsoil depths. The correlations between plant and soil properties were analyzed statistically. The results showed species richness, diversity and evenness were not significantly different among different depths of topsoil (P > 0.05). Vegetation coverage, density, height and aboveground biomass increased significantly (P < 0.05) with increasing topsoil depth. Soil properties did not change significantly with increasing topsoil depth (P > 0.05), but soil organic matter was significantly higher at 40‒45 cm topsoil depth than at other two depths (P < 0.05). All soil properties, with the exception of total potassium, were positively correlated with the plant growth parameters. The 40‒45 cm topsoil depth of replacement should be considered as effective method in reclaiming coal mine spoils. The use of both topsoil replacement to a depth of 40‒45 cm and sowing of suitable herbaceous seeds is found to be an effective restoration strategy. Additionally, fertilization might be used as a substitute for artificial topsoil replacement to improve soil quality and speed up revegetation process by the positive plant-soil interactions.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 758 ◽  
Author(s):  
Saiyaremu Halifu ◽  
Xun Deng ◽  
Xiaoshuang Song ◽  
Ruiqing Song

Trichoderma spp. are proposed as major plant growth-promoting fungi that widely exist in the natural environment. These strains have the abilities of rapid growth and reproduction and efficient transformation of soil nutrients. Moreover, they can change the plant rhizosphere soil environment and promote plant growth. Pinus sylvestris var. mongolica has the characteristics of strong drought resistance and fast growth and plays an important role in ecological construction and environmental restoration. The effects on the growth of annual seedlings, root structure, rhizosphere soil nutrients, enzyme activity, and fungal community structure of P. sylvestris var. mongolica were studied after inoculation with Trichoderma harzianum E15 and Trichoderma virens ZT05, separately. The results showed that after inoculation with T. harzianum E15 and T. virens ZT05, seedling biomass, root structure index, soil nutrients, and soil enzyme activity were significantly increased compared with the control (p < 0.05). There were significant differences in the effects of T. harzianum E15 and T. virens ZT05 inoculation on the growth and rhizosphere soil nutrient of P. sylvestris var. mongolica (p < 0.05). For the E15 treatment, the seedling height, ground diameter, and total biomass of seedlings were higher than that those of the ZT05 treatment, and the rhizosphere soil nutrient content and enzyme activity of the ZT05 treatment were higher than that of the E15 treatment. The results of alpha and beta diversity analyses showed that the fungi community structure of rhizosphere soil was significantly different (p < 0.05) among the three treatments (inoculated with T. harzianum E15, T. virens ZT05, and not inoculated with Trichoderma). Overall, Trichoderma inoculation was correlated with the change of rhizosphere soil nutrient content.


Author(s):  
Aigbedion Isaac ◽  
Salufu Samuel

Electrical geophysical method was applied, to select viable area with essential soil nutrients for plant’s growth. Conventional soil test analysis was carried out for the purpose of confirmation. A case study was done at Ukpenu-Ibhiese and Iruekpen in Ekpoma. The result of the electrical resistivity geophysical method showed that southwest and northwest of the area has resistivity values that ranged between 80Ωm to 170Ωm while the remaining part of the area has values higher than  170Ωm, ranged from  580Ωm to 950Ωm. Values of organic matter, Nitrogen, Phosphorus, and Potassium,  obtained from the soil test in area with 80Ωm to 170Ωm indicated good proportion of essential soil nutrients for plant growth while area with resistivity values that ranged from 580Ωm to 950Ωm was deficient in essential soil nutrients for plant growth. The results further proved that soil electrical physical properties thus detected and mapped can be used as a proxy of physical, chemical, and biological features relevant for the appropriate site selection and soils management, based on their resistivity behavior, spatial variability, and time dynamics in the area of study.


2018 ◽  
Vol 2 (2) ◽  
pp. 44
Author(s):  
Mujiyo Mujiyo ◽  
Sumarno Sumarno ◽  
Suryono Suryono ◽  
Novi Rahmawati Sutopo

Micro small business (UKM: in indonesian) "Sejahtera" is a chicken farm that has problems with chicken manure that has not been utilized properly. The farmer group "Bejo Agro Farm" is a plant nursery located in Mojogedang District, Karanganyar Regency. Availability of soil nutrients is one of the determinant factors of the quality of plant seeds. Availability of nutrients for plants can be obtained by applying organic fertilizers. Applications of microbial enriched organic fertilizers can be used as an alternative to maintain plant quality. Microbial enriched organic fertilizers contain several types of microbes that can support plant growth. Organic fertilizer comes from chicken manure coupled with several bio-starter containing beneficial microbes. The organic fertilizer used has been tested for its quality, to determine the content of the nutrient. The technology in the form of microbial enriched organic fertilizer can help "Bejo Agro Farm" to maintain the quality of plant seeds and be able to solve the problems of chicken manure waste of "Sejahtera" chicken farms.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1023D-1023
Author(s):  
John Sloan ◽  
Cynthia McKenney ◽  
James McAfee ◽  
Wayne Mackay

Dairy manure compost (DMC) may be an effective soil amendment when establishing new urban landscapes. The objective of this study was to evaluate the bioavailability of DMC nutrients to typical urban landscape plants. In March 2003, DMC rates of 0, 9, 18, and 27 kg/m2 (0, 1.25, 2.5, 5 cm) were incorporated into the top 10 to 15 cm of Austin silty clay soil. Half of each 6 x 6-m plot was established with bermudagrass sod and the other half with six types of ornamental plants consisting of annual, perennial, and woody species. During the third 2005 growing season, plant tissue was harvested from selected landscape plants to measure biomass production and nutrient uptake. Plant growth and nutrient contents were compared to plant available soil nutrients that were measured during fall 2004 and 2005. Plant available P in the upper 7.5 cm of soil ranged from 89 to 170 mg/kg in September 2004 and from 31.3 to 105.5 mg/kg in August 2004. Potassium and trace elements (Fe, Cu, and Zn) were also increased in the upper 7.5 cm by DMC applications. Increased concentrations of plant available soil nutrients in DMC-amended plots were correlated to overall increases in plant growth and nutrient uptake. Bermuda grass exhibited increased growth and increased tissue concentrations of N, P, K, and Zn. Penta biomass and nutrient uptake were also increased by DMC applications. Lantana stem weights significantly increased with DMC application rate up to 18 kg/m2, but no additional increases were obtained with the 27 kg/m2 rate. Results of this study show that, after three growing seasons with no additional fertilization, a 1- to 2-cm application of dairy manure compost is sufficient to provide continued fertility to landscape plants.


2020 ◽  
Author(s):  
Juanjuan Fu ◽  
Yilan Luo ◽  
Pengyue Sun ◽  
Jinzhu Gao ◽  
Donghao Zhao ◽  
...  

Abstract Background: The shade represents one of the major environmental limitations for turfgrass growth. Shade influences plant growth and alters plant metabolism, yet little is known about how shade affects the structure of rhizosphere soil microbial communities and the role of soil microorganisms in plant shade responses. In this study, a glasshouse experiment was conducted to examine the impact of shade on the growth and photosynthetic capacity of two contrasting shade-tolerant turfgrasses, shade-tolerant dwarf lilyturf (Ophiopogon japonicus, OJ) and shade-intolerant perennial turf-type ryegrass (Lolium perenne, LP). We also examined soil-plant feedback effects on shade tolerance in the two turfgrass genotypes. The composition of the soil bacterial community was assayed using high-throughput sequencing. Results: OJ maintained higher photosynthetic capacity and root growth than LP under shade stress, thus OJ was found to be more shade-tolerant than LP. Shade-intolerant LP responded better to both shade and soil microbes than shade-tolerant OJ. The shade and live soil decreased LP growth, but increased biomass allocation to shoots in the live soil. The plant shade response index of LP is higher in live soil than sterile soil, driven by weakened soil-plant feedback under shade stress. In contrast, there was no difference in these values for OJ under similar shade and soil treatments. Shade stress had little impact on the diversity of the OJ and the LP bacterial communities, but instead impacted their composition. The OJ soil bacterial communities were mostly composed of Proteobacteria and Acidobacteria. Further pairwise fitting analysis showed that a positive correlation of shade-tolerance in two turfgrasses and their bacterial community compositions. Several soil properties (NO3--N, NH4+-N, AK) showed a tight coupling with several major bacterial communities under shade stress. Moreover, OJ shared core bacterial taxa known to promote plant growth and confer tolerance to shade stress, which suggests common principles underpinning OJ-microbe interactions. Conclusion: Soil microorganisms mediate plant responses to shade stress via plant-soil feedback and shade-induced change in the rhizosphere soil bacterial community structure for OJ and LP plants. These findings emphasize the importance of understanding plant-soil interactions and their role in the mechanisms underlying shade tolerance in shade-tolerant turfgrasses.


Sign in / Sign up

Export Citation Format

Share Document