Piperine Improves Obesity by Inhibiting Fatty Acid Absorption and Repairing Intestinal Barrier Function

Author(s):  
Wenli Wang ◽  
Yanhua Zhang ◽  
Xiong Wang ◽  
Huilian Che ◽  
Yali Zhang
2021 ◽  
Author(s):  
Wenli Wang ◽  
Yanhua Zhang ◽  
Xiong Wang ◽  
Huilian Che ◽  
Yali Zhang

Abstract BackgroundCurrently, the weight loss effects of piperine have gained considerable attention; however, the underlying mechanism needs to be comprehensively elucidated. In the present study, we aimed to investigate the relationship between the weight loss effects of piperine and intestinal function. Methods Eight-week-old Sprague Dawley male rats were provided standard diet or HFD diet for 16 weeks. After, rats from the HFD group were divided into four group, including HFD, HFD with daily gavage with 2.7mg/kg body weight of piperine (PIP-L), 13.5mg/kg body weight of piperine (PIP-M), 27mg/kg body weight of piperine (PIP-H) for another 8 weeks. The fecal fat content, serum TG, FAA levels, jejunum structure and gene expression levels related to fatty acid absorption and barrier function in intestinal were detected. Then the Caco-2 cell was cultured to explore the effects of piperine on cell proliferation, differentiation, barrier function and fatty acid absorption.ResultsIn our study, piperine repaired the tight junction damage induced by obesity by downregulating jejunal tumor necrosis factor-α and reducing lipopolysaccharide-induced damage on intestinal cell proliferation, thus enhancing intestinal barrier function, which is beneficial in reducing chronic inflammation associated with obesity. In addition, piperine inhibited intestinal fatty acid absorption in both cellular and animal models. The underlying mechanism may be related to the downregulation of fatty acid absorption-related genes, fatty acid-binding protein 2 and cluster of differentiation 36, but not fatty acid transport protein 4.Conclusion The anti-obesity effect of piperine is related to the enhancement of intestinal barrier function and inhibition of intestinal fatty acid absorption.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Fernanda Roca Rubio ◽  
Ulrika Eriksson ◽  
Robert J. Brummer ◽  
Julia König

AbstractThe intestinal barrier plays a crucial role in maintaining gut health, and an increased permeability has been linked to several intestinal and extra-intestinal disorders. There is an increasing demand for interventions aimed at strengthening this barrier and for in vivo challenge models to assess their efficiency. This study investigated the effect of sauna-induced dehydration on intestinal barrier function (clinicaltrials.gov: NCT03620825). Twenty healthy subjects underwent three conditions in random order: (1) Sauna dehydration (loss of 3% body weight), (2) non-steroidal anti-inflammatory drug (NSAID) intake, (3) negative control. Intestinal permeability was assessed by a multi-sugar urinary recovery test, while intestinal damage, bacterial translocation and cytokines were assessed by plasma markers. The sauna dehydration protocol resulted in an increase in gastroduodenal and small intestinal permeability. Presumably, this increase occurred without substantial damage to the enterocytes as plasma intestinal fatty acid-binding protein (I-FABP) and liver fatty acid-binding protein (L-FABP) were not affected. In addition, we observed significant increases in levels of lipopolysaccharide-binding protein (LBP), IL-6 and IL-8, while sCD14, IL-10, IFN-ɣ and TNF-α were not affected. These results suggest that sauna dehydration increased intestinal permeability and could be applied as a new physiological in vivo challenge model for intestinal barrier function.


2019 ◽  
Vol 10 ◽  
Author(s):  
Xin Zong ◽  
Xiaoxuan Cao ◽  
Hong Wang ◽  
Xiao Xiao ◽  
Yizhen Wang ◽  
...  

2012 ◽  
Vol 11 (2) ◽  
pp. 140-152 ◽  
Author(s):  
Xiaochao Wei ◽  
Zhen Yang ◽  
Federico E. Rey ◽  
Vanessa K. Ridaura ◽  
Nicholas O. Davidson ◽  
...  

2020 ◽  
Vol 20 (7) ◽  
pp. 566-577 ◽  
Author(s):  
Amlan Kumar Patra

Natural plant bioactive compounds (PBC) have recently been explored as feed additives to improve productivity, health and welfare of poultry following ban or restriction of in-feed antibiotic use. Depending upon the types of PBC, they possess antimicrobial, digestive enzyme secretion stimulation, antioxidant and many pharmacological properties, which are responsible for beneficial effects in poultry production. Moreover, they may also improve the intestinal barrier function and nutrient transport. In this review, the effects of different PBC on the barrier function, permeability of intestinal epithelia and their mechanism of actions are discussed, focusing on poultry feeding. Dietary PBC may regulate intestinal barrier function through several molecular mechanisms by interacting with different metabolic cascades and cellular transcription signals, which may then modulate expressions of genes and their proteins in the tight junction (e.g., claudins, occludin and junctional adhesion molecules), adherens junction (e.g., E-cadherin), other intercellular junctional proteins (e.g., zonula occludens and catenins), and regulatory proteins (e.g., kinases). Interactive effects of PBC on immunomodulation via expressions of several cytokines, chemokines, complement components, pattern recognition receptors and their transcription factors and cellular immune system, and alteration of mucin gene expressions and goblet cell abundances in the intestine may change barrier functions. The effects of PBC are not consistent among the studies depending upon the type and dose of PBC, physiological conditions and parts of the intestine in chickens. An effective concentration in diets and specific molecular mechanisms of PBC need to be elucidated to understand intestinal barrier functionality in a better way in poultry feeding.


2020 ◽  
Vol 11 ◽  
Author(s):  
Runze Quan ◽  
Chaoyue Chen ◽  
Wei Yan ◽  
Ying Zhang ◽  
Xi Zhao ◽  
...  

B cell-activating factor (BAFF) production is increased in septic patients. However, the specific role of BAFF in sepsis remains unknown. This study was designed to investigate the expression and function of BAFF in an experimental endotoxemia model and to identify the potential mechanisms. We established an endotoxemia mouse (6–8 weeks, 20–22 g) model by administering 30 mg/kg lipopolysaccharide (LPS). BAFF levels in the circulating system and organ tissues were measured 4 and 8 h after LPS injection. Survival rates in the endotoxemia mice were monitored for 72 h after BAFF blockade. The effects of BAFF blockade on systemic and local inflammation, organ injuries, and intestinal barrier function were also evaluated 4 h after LPS treatment. BAFF production was systemically and locally elevated after LPS challenge. BAFF blockade improved the survival rate, systemic inflammation, and multi-organ injuries. Moreover, BAFF blockade attenuated both intestinal inflammation and impaired intestinal permeability. BAFF blockade upregulated ZO-1 and occludin protein levels via the NF-κB/MLCK/MLC signaling pathway. These results suggested that BAFF blockade protects against lethal endotoxemia at least partially by alleviating inflammation, multi-organ injuries, and improving intestinal barrier function and provides a novel focus for further research on sepsis and experimental evidence for clinical therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Laura Prospero ◽  
Giuseppe Riezzo ◽  
Michele Linsalata ◽  
Antonella Orlando ◽  
Benedetta D’Attoma ◽  
...  

Abstract Background Irritable bowel syndrome (IBS) is characterised by gastrointestinal (GI) and psychological symptoms (e.g., depression, anxiety, and somatization). Depression and anxiety, but not somatization, have already been associated with altered intestinal barrier function, increased LPS, and dysbiosis. The study aimed to investigate the possible link between somatization and intestinal barrier in IBS with diarrhoea (IBS-D) patients. Methods Forty-seven IBS-D patients were classified as having low somatization (LS = 19) or high somatization (HS = 28) according to the Symptom Checklist-90-Revised (SCL-90-R), (cut-off score = 63). The IBS Severity Scoring System (IBS-SSS) and the Gastrointestinal Symptom Rating Scale (GSRS) questionnaires were administered to evaluate GI symptoms. The intestinal barrier function was studied by the lactulose/mannitol absorption test, faecal and serum zonulin, serum intestinal fatty-acid binding protein, and diamine oxidase. Inflammation was assessed by assaying serum Interleukins (IL-6, IL-8, IL-10), and tumour necrosis factor-α. Dysbiosis was assessed by the urinary concentrations of indole and skatole and serum lipopolysaccharide (LPS). All data were analysed using a non-parametric test. Results The GI symptoms profiles were significantly more severe, both as a single symptom and as clusters of IBS-SSS and GSRS, in HS than LS patients. This finding was associated with impaired small intestinal permeability and increased faecal zonulin levels. Besides, HS patients showed significantly higher IL-8 and lowered IL-10 concentrations than LS patients. Lastly, circulating LPS levels and the urinary concentrations of indole were higher in HS than LS ones, suggesting a more pronounced imbalance of the small intestine in the former patients. Conclusions IBS is a multifactorial disorder needing complete clinical, psychological, and biochemical evaluations. Trial registration: https://clinicaltrials.gov/ct2/show/NCT03423069.


Sign in / Sign up

Export Citation Format

Share Document