scholarly journals The key role of the Northern Mozambique Channel for Indian Ocean tropical tuna fisheries

2019 ◽  
Vol 29 (3) ◽  
pp. 613-638 ◽  
Author(s):  
Emmanuel Chassot ◽  
Nathalie Bodin ◽  
Fany Sardenne ◽  
David Obura
2014 ◽  
Vol 71 (7) ◽  
pp. 1728-1749 ◽  
Author(s):  
David M. Kaplan ◽  
Emmanuel Chassot ◽  
Justin M. Amandé ◽  
Sibylle Dueri ◽  
Hervé Demarcq ◽  
...  

Abstract Effective use of spatial management in the pelagic realm presents special challenges due to high fish and fisher mobility, limited knowledge and significant governance challenges. The tropical Indian Ocean provides an ideal case study for testing our ability to apply existing data sources to assessing impacts of spatial management on tuna fisheries because of several recent controversial spatial closures. We review the scientific underpinnings of pelagic MPA effects, spatio-temporal patterns of Indian Ocean tuna catch, bycatch and fish movements, and the consequences of these for the efficacy of spatial management for Indian Ocean tropical tuna fisheries. The tropical Indian Ocean is characterized by strong environmental fluctuations, regular seasonal variability in catch, large observed tuna displacement distances, relatively uniform catch-per-unit-effort and bycatch rates over space, and high fisher mobility, all of which suggest significant variability and movement in tropical tuna fisheries that are simply not well adapted to static spatial closures. One possible exception to this overall conclusion would be a large time/area closure east of Somalia. If closed for a significant fraction of the year it could reduce purse-seine bycatch and juvenile tuna catch. Dynamic closures following fish migratory patterns are possible, but more focused information on fish movements will be needed for effective implementation. Fortunately, several recent improvements in conventional fishery management and reporting will likely enhance our ability to evaluate spatial and non-spatial management options in the near future, particularly as pertaining to bycatch species.


2019 ◽  
Vol 26 (1) ◽  
pp. 403 ◽  
Author(s):  
Mialy Andriamahefazafy ◽  
Christian A. Kull

<p>Many African countries are progressively embracing the blue economy. African islands of the western Indian Ocean, however, have been involved in it for more than twenty years through the exploitation of their 'blue gold': tuna. In this article, we use Ribot and Peluso's (2003) "theory of access" to map the different ways actors access tuna under diverse socio-economic contexts and how power relations are created through different mechanisms of access. We show that rights-based mechanisms such as fishing access agreements are highly questionable for their fairness and sustainability but bring benefits such as funding for fisheries-related infrastructures and projects. We also show that access to the resource is dependent on knowledge held by fishers, on technological advances as well as on diverse labor relations. These mechanisms significantly impact the quantity of fish that can be accessed by artisanal versus industrial market sectors, and generate narratives of unequal access to tuna. Furthermore, we take into consideration the materiality of tuna as a highly mobile resource in a space of fluid boundaries, to show how the fish can be an actant in shaping access but also how fishing practices can produce new materialities. Based on the above evidence, we propose an enhancement of the theory of access to consider the role of materiality of the resources and the sea. We conclude that to ensure that tuna fisheries continue to contribute to the blue economy of African islands, stakeholders need to balance between the diverse benefits produced by the fisheries and the uneven power relations that can arise, and to integrate the impact of a material sea and fish in this reflection. </p><p><strong>Keywords</strong>: fishers, knowledge, materiality, power relations, spatiality of the sea, technology, Madagascar, Mauritius, Seychelles</p>


Author(s):  
Raya Muttarak ◽  
Wiraporn Pothisiri

In this paper we investigate how well residents of the Andaman coast in Phang Nga province, Thailand, are prepared for earthquakes and tsunami. It is hypothesized that formal education can promote disaster preparedness because education enhances individual cognitive and learning skills, as well as access to information. A survey was conducted of 557 households in the areas that received tsunami warnings following the Indian Ocean earthquakes on 11 April 2012. Interviews were carried out during the period of numerous aftershocks, which put residents in the region on high alert. The respondents were asked what emergency preparedness measures they had taken following the 11 April earthquakes. Using the partial proportional odds model, the paper investigates determinants of personal disaster preparedness measured as the number of preparedness actions taken. Controlling for village effects, we find that formal education, measured at the individual, household, and community levels, has a positive relationship with taking preparedness measures. For the survey group without past disaster experience, the education level of household members is positively related to disaster preparedness. The findings also show that disaster related training is most effective for individuals with high educational attainment. Furthermore, living in a community with a higher proportion of women who have at least a secondary education increases the likelihood of disaster preparedness. In conclusion, we found that formal education can increase disaster preparedness and reduce vulnerability to natural hazards.


2020 ◽  
Vol 33 (2) ◽  
pp. 749-765 ◽  
Author(s):  
Rondrotiana Barimalala ◽  
Ross C. Blamey ◽  
Fabien Desbiolles ◽  
Chris J. C. Reason

AbstractThe Mozambique Channel trough (MCT) is a cyclonic region prominent in austral summer in the central and southern Mozambique Channel. It first becomes evident in December with a peak in strength in February when the Mozambique Channel is warmest and the Mascarene high (MH) is located farthest southeast in the Indian Ocean basin. The strength and the timing of the mean MCT are linked to that of the cross-equatorial northeasterly monsoon in the tropical western Indian Ocean, which curves as northwesterlies toward northern Madagascar. The interannual variability in the MCT is associated with moist convection over the Mozambique Channel and is modulated by the location of the warm sea surface temperatures in the south Indian Ocean. Variability of the MCT shows a strong relationship with the equatorial westerlies north of Madagascar and the latitudinal extension of the MH. Summers with strong MCT activity are characterized by a prominent cyclonic circulation over the Mozambique Channel, extending to the midlatitudes. These are favorable for the development of tropical–extratropical cloud bands over the southwestern Indian Ocean and trigger an increase in rainfall over the ocean but a decrease over the southern African mainland. Most years with a weak MCT are associated with strong positive south Indian Ocean subtropical dipole events, during which the subcontinent tends to receive more rainfall whereas Madagascar and northern Mozambique are anomalously dry.


Itinerario ◽  
1987 ◽  
Vol 11 (2) ◽  
pp. 72-86 ◽  
Author(s):  
Kenneth McPherson

Until fairly recently, histories of European imperial expansion in the Indian Ocean region have been written largely in terms of the endeavours of Europeans in creating and controlling empire. Only in the last couple of decades has recognition been given slowly to the role of the indigenous economic and political compradors, both large and small, who were vital to the evolution and sustenance of European colonial empires.


2020 ◽  
Author(s):  
Sobhan Kumar Kompalli ◽  
Surendran Nair Suresh Babu ◽  
Krishnaswamy Krishnamoorthy ◽  
Sreedharan Krishnakumari Satheesh ◽  
Mukunda M. Gogoi ◽  
...  

Abstract. Regional climatic implications of aerosol black carbon (BC) are well recognized over South Asia, which has a wide variety of anthropogenic sources in a large abundance. Significant uncertainties remain in its quantification due to lack of sufficient information on the microphysical properties (its concentration, size, and mixing state with other aerosol components), which determine the absorption potential of BC. Especially the information on mixing state of BC is extremely sparse over this region. In this study, first-ever observations of the size distribution and mixing state of individual refractory black carbon (rBC) particles in the south Asian outflow to Southeastern Arabian Sea, northern and equatorial Indian Ocean regions are presented based on measurements using a single particle soot photometer (SP2) aboard the ship cruise of the Integrated Campaign for Aerosols, gases, and Radiation Budget (ICARB-2018) during winter-2018 (16 January to 13 February). The results revealed significant spatial heterogeneity of BC characteristics. Highest rBC mass concentrations (~ 938 ± 293 ng m−3) with the highest relative coating thickness (RCT; the ratio of BC core to its coating diameters) of ~ 2.16 ± 0.19 are found over the Southeast Arabian Sea (SEAS) region, which is in the proximity of the continental outflow. As we move to farther oceanic regions, though the mass concentrations decreased by nearly half (~ 546 ± 80 ng m−3), BC still remained thickly coated (RCT ~ 2.05 ± 0.07). The air over the remote equatorial Indian Ocean, which received considerable marine air masses compared to the other regions, showed the lowest rBC mass concentrations (~ 206 ± 114 ng m−3), with a moderately thick coating (RCT ~ 1.73 ± 0.16). Even over oceanic regions far from the landmass, regions which received the outflow from more industrialized east coast/the Bay of Bengal had thicker coating (~ 104 nm) compared to regions that received outflow from the west coast/peninsular India (~ 86 nm). Although different regions of the ocean depicted contrasting concentrations and mixing state parameters due to varying extent and nature of the continental outflow as well as the atmospheric lifetime of air masses, the modal parameters of rBC mass-size distributions were similar over all the regions. The observed mono-modal distribution with mean mass median diameters (MMD) in the range of 0.19–0.20 μm suggested mixed sources of BC. The mean fraction of BC containing particles (FBC) varied in the range 0.20–0.28 (suggesting significant amounts of non-BC particles), whereas the bulk mixing ratio of coating mass to rBC mass was highest (8.77 ± 2.77) over the outflow regions compared to the remote ocean (4.29 ± 1.54) highlighting the role of outflow in providing condensable material for coating on rBC. These parameters, along with the information on size-resolved mixing state of BC cores, throw light on the role of sources and secondary processing of their complex mixtures for coating on BC under highly polluted conditions. Examination of the non-refractory sub-micrometre aerosol chemical composition obtained using the aerosol chemical speciation monitor (ACSM) suggested that the overall aerosol system was sulfate dominated over the far-oceanic regions. In contrast, organics were equally prominent adjacent to the coastal landmass. Association between the BC mixing state and aerosol chemical composition suggested that sulfate was the probable dominant coating material on rBC cores.


Sign in / Sign up

Export Citation Format

Share Document