Combination index of the concentration and in vivo antagonism activity of racemic warfarin and its metabolites to assess individual drug responses

2018 ◽  
Vol 47 (3) ◽  
pp. 467-472
Author(s):  
Shuhei Kobayashi ◽  
Koji Ishii ◽  
Yasuko Yamada ◽  
Emi Ryu ◽  
Junya Hashizume ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3812
Author(s):  
Mai-Huong T. Ngo ◽  
Sue-Wei Peng ◽  
Yung-Che Kuo ◽  
Chun-Yen Lin ◽  
Ming-Heng Wu ◽  
...  

The role of a YAP-IGF-1R signaling loop in HCC resistance to sorafenib remains unknown. Method: Sorafenib-resistant cells were generated by treating naïve cells (HepG2215 and Hep3B) with sorafenib. Different cancer cell lines from databases were analyzed through the ONCOMINE web server. BIOSTORM–LIHC patient tissues (46 nonresponders and 21 responders to sorafenib) were used to compare YAP mRNA levels. The HepG2215_R-derived xenograft in SCID mice was used as an in vivo model. HCC tissues from a patient with sorafenib failure were used to examine differences in YAP and IGF-R signaling. Results: Positive associations exist among the levels of YAP, IGF-1R, and EMT markers in HCC tissues and the levels of these proteins increased with sorafenib failure, with a trend of tumor-margin distribution in vivo. Blocking YAP downregulated IGF-1R signaling-related proteins, while IGF-1/2 treatment enhanced the nuclear translocation of YAP in HCC cells through PI3K-mTOR regulation. The combination of YAP-specific inhibitor verteporfin (VP) and sorafenib effectively decreased cell viability in a synergistic manner, evidenced by the combination index (CI). Conclusion: A YAP-IGF-1R signaling loop may play a role in HCC sorafenib resistance and could provide novel potential targets for combination therapy with sorafenib to overcome drug resistance in HCC.


2011 ◽  
Vol 63 (2) ◽  
pp. 293-304 ◽  
Author(s):  
Wanda Baer-Dubowska ◽  
Aleksandra Majchrzak-Celińska ◽  
Michał Cichocki

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3931-3931 ◽  
Author(s):  
Paul A. Algate ◽  
Jennifer Wiens ◽  
Christy Nilsson ◽  
Mien Sho ◽  
Debra T. Chao ◽  
...  

Abstract Abstract 3931 Background: CD37 is a 50–55 kDa heavily glycosylated member of the tetraspanin superfamily of molecules. This cell surface protein is expressed on normal and transformed B-cells, and has been implicated in diverse processes including cellular activation and proliferation, cell motility, and cell-cell adhesion. TRU-016 is a novel humanized anti-CD37 SMIP™ protein. Pre-clinical studies have demonstrated that anti-CD37 SMIP™ protein mediates caspase-independent direct killing of normal and malignant B-cells, a mechanism of action that appears to be different than CD20 therapies. In addition, TRU-016 results in indirect killing through NK cell mediated SMIP-protein directed cellular cytotoxicity (SDCC). The therapeutic potential of TRU-016 against several subsets of B-cell malignancies is currently being investigated in the clinic. Methods: The ability of TRU-016 to interact and increase cell killing with established therapeutics rituximab (anti-CD20 antibody), bendamustine (bi-functional alkylating agent/nucleoside analog), LY294002 (PI3K inhibitor) and temsirolimus (mTOR inhibitor) was investigated in vitro using the Rec-1 (mantle cell lymphoma) and SU-DHL-6 (diffuse large B cell lymphoma) cell lines. Individual drugs were tested in combination with TRU-016 as well as in a multiple drug cocktail. Combination index analyses were performed for drug combinations over the 20–90% effect levels. To determine whether in vitro synergy could be recapitulated in vivo, DoHH-2 (follicular lymphoma) xenografts were treated with TRU-016, bendamustine, and the combination of TRU-016 and bendamustine with or without rituximab. Furthermore, the effect of the dosing schedule with the combination of TRU-016 and rituximab was explored by comparing the treatment over a short time period to an extended (maintenance) dosing regimen. CD37 expression on the tumor xenografts was evaluated post different treatment by immunohistochemistry. Results: Combination index analyses determined that the killing effects of TRU-016 was synergistic with rituximab, bendamustine and temsirolimus in NHL models. Furthermore, TRU-016 provided additional efficacy when added to the combination of rituximab and bendamustine. In vivo results demonstrated that the in vitro synergy results were applicable to a more complex in vivo disease model. The combination of TRU-016 with bendamustine or rituximab resulted in increased tumor growth delay compared to that attained with the individual drugs. The addition of TRU-016 to the combination of bendamustine and rituximab resulted in increased tumor growth delay compared to the two drugs alone. The observed efficacy of the combination of TRU-016 and rituximab could be extended with repeated (maintenance) dosing with tumor free survival being observed beyond the 35 days of dosing. The combination of TRU-016 with temsirolimus also resulted in a reduction of tumor growth compared to either molecule alone. CD37 target expression was detected in the xenograft tumors post-treatment with all drugs tested. Conclusions: TRU-016 in combination with rituximab, bendamustine or temsirolimus increased cell killing of NHL cells in vitro over that observed for each agent alone. Furthermore, the triple combination of TRU-016 with rituximab, bendamustine or temsirolimus displayed greater anti-tumor activity in vivo than each of the agents alone against a follicular lymphoma tumor model. The addition of TRU-016 to a combination of rituximab and bendamustine resulted in increased killing in vitro and in vivo. The combinatorial activity of TRU-016 and rituximab in vivo was increased when the drugs were administered over a longer period. These results provide preclinical rationale for the potential different combinations of TRU-016 with several established therapeutics for the treatment of NHL and related B-cell malignancies. Disclosures: Algate: Trubion Pharmaceuticals: Employment. Wiens:Trubion Pharmaceuticals: Employment. Nilsson:Trubion Pharmaceuticals: Employment. Sho:Facet/Abbott: Employment. Chao:Facet/Abbott: Employment. Starling:Facet/Abbott: Employment. Gordon:Trubion Pharmaceuticals: Employment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3621-3621 ◽  
Author(s):  
Jonathan C Snedeker ◽  
Tamara M Burleson ◽  
Raoul Tibes ◽  
Christopher C. Porter

Abstract Introduction: Successful treatment of AML remains dependent upon cytotoxic chemotherapy. However, traditional regimens are not well tolerated by older patients who are at highest risk of disease, and salvage rates after relapse are low, necessitating novel therapeutic strategies. Our groups identified Wee1 as a potential therapeutic target in AML, particularly in the context of concomitant treatment with cytarabine (Tibes et al, Blood, 2012; Porter et al, Leukemia, 2012). Wee1 inhibits CDK1&2 via phosphorylation thereby stalling cell cycle progression. One consequence of Wee1 inhibition/CDK1 activation is impairment of DNA repair via homologous recombination (Krajewska et al, Oncogene, 2013). Cells in which HR is impaired are dependent upon Parp1/2 function, and HR deficient cells are particularly sensitive to Parp1/2 inhibition. Therefore, we hypothesized that combined Wee1 and Parp1/2 inhibition may result in greater inhibition of AML cell proliferation and survival than either alone. Methods: Human AML cell lines, MV4-11 and Molm-13, and a mouse AML that expresses MLL-ENL/FLT3-ITD were cultured with various concentrations of a Wee1 inhibitor (AZ1775) and a Parp1/2 inhibitor (olaparib) and counted 72 hours later by propidium iodide exclusion and flow cytometry. In some experiments, cells were split into fresh media to recover for 72 more hours. Combination Index (CI) values were calculated by the method of Chou and Talalay. Apoptosis was measured using Annexin V/7AAD and flow cytometry. Western blots were used to confirm inhibition of CDK1/2 phosphorylation and to measure DNA damage induction (gamma-H2AX). Results: Combined inhibition of Wee1 and Parp1/2 was synergistic, as measured by cell numbers at 72 hours, in all 3 cell lines tested, with combination index values ranging from 0.3 to 0.9. When cells were allowed to recover after treatment, those treated by single agents were able to continue proliferating. However, those treated with the combination did not recover as well or at all, indicating greatly impaired proliferative capacity. Combined inhibition of Wee1 and Parp1/2 also resulted in a significant increase in apoptosis greater than either drug alone. Western blots for gamma-H2AX confirmed that the combination of Wee1 and Parp1/2 resulted in more DNA damage than either drug alone. Discussion: Combined inhibition of Wee1 and Parp1/2 results in greater inhibition of AML cell proliferation, DNA damage and apoptosis than either drug alone. Future studies will include experiments with primary patient samples, as well as in vivo trials combining Wee1 inhibition with Parp1/2 inhibition. These preliminary studies raise the possibility of rational combinations of targeted agents for leukemia in those for whom conventional chemotherapeutics may not be well tolerated. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3301-3301
Author(s):  
Pritesh R. Patel ◽  
Annie L. Oh ◽  
Vitalyi Senyuk ◽  
Dolores Mahmud ◽  
Nadim Mahmud ◽  
...  

Abstract High dose melphalan is commonly used in patients with multiple myeloma (MM). Resistance to melphalan has been linked to the ability to repair DNA damage. To test whether DNA repair inhibitors overcome resistance to melphalan and and also have a direct anti-MM effect, we tested MM cell lines RPMI8226 and U266 in-vitro and in-vivo, using a NOD/SCID/ gamma null (NSG) xenograft model. RPMI8226 and U266 cells were initially treated in-vitro with the PARP inhibitor ABT-888. Using a proliferative assay, myeloma cells appeared sensitive to ABT-888 with low GI50 values (8.7μM for RPMI8226 cells, 49μM for U266 cells) and increased γH2AX foci, which persisted at 24 hours after treatment. This was confirmed in methycellulose colony assay where ABT-888 treatment reduced RPMI8226 colonies by 35% (p=0.002). Next we showed synergistic cytotoxicity between ABT-888 and melphalan. In both RPMI8226 and U266 cells strong synergy was displayed with a combination index (CI) less than 1 in proliferative assays (CI 0.5 and 0.3 at 50% proliferation respectively). Combination ABT-888 and melphalan treated cells underwent accelerated senescence compared to cells treated by melphalan alone (27% versus 51% βGal+ staining at 24 hours, p=0.02). This was confirmed by upregulation of senescence related genes p16 (1.6 fold increase) and p21 (1.5 fold increase). We did not find significant difference in apoptosis by Annexin V/ PI staining. Given that increased non-homologous end joining (NHEJ) activity has been shown to lead to resistance to melphalan, we tested whether an inhibitor of NHEJ could be synergistic with PARP inhibition and melphalan. Treatment with the DNA-PK inhibitor NU7026 at 10μM in addition to ABT-888 at 4μM resulted in 46% reduction in proliferation in RPMI8226 cells and 52% in U266 cells. When used in combination with melphalan chemotherapy, the dual DNA repair inhibitor therapy showed marked synergy in RPMI8226 cells with a combination index of 0.39. Finally we tested the ability of the combination of ABT-888 and melphalan to treat myeloma in-vivo. NSG mice were injected via tail vein with 5x106 RPMI8226 cells. Control (untreated) mice subsequently developed myeloma infiltrating the marrow, spleen and axial skeleton, with hind limb paralysis occurring at a median of 42 days. Treated mice received intraperitoneal injections of ABT-888 (3 times a week), or melphalan (weekly) or a combination of both agents starting on day 28 post-injection of MM cells for a total of 3 weeks. Using ABT-888, melphalan and a combination of both agents, median survival of mice was progressively prolonged (44 vs. 67 vs. 107 days, respectively) (p=0.02). Here we show that PARP and DNA-PK inhibition synergizes with melphalan in myeloma cells lines, providing a rationale for the addition of these agents to conditioning chemotherapy. In addition, we also show a direct anti-myeloma activity of these agents without the use of alkylator chemotherapy. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 37 (6) ◽  
pp. E12 ◽  
Author(s):  
Encouse B. Golden ◽  
Hee-Yeon Cho ◽  
Ardeshir Jahanian ◽  
Florence M. Hofman ◽  
Stan G. Louie ◽  
...  

Object In a recent clinical trial, patients with newly diagnosed glioblastoma multiforme benefited from chloroquine (CQ) in combination with conventional therapy (resection, temozolomide [TMZ], and radiation therapy). In the present study, the authors report the mechanism by which CQ enhances the therapeutic efficacy of TMZ to aid future studies aimed at improving this therapeutic regimen. Methods Using in vitro and in vivo experiments, the authors determined the mechanism by which CQ enhances TMZ cytotoxicity. They focused on the inhibition-of-autophagy mechanism of CQ by knockdown of the autophagy-associated proteins or treatment with autophagy inhibitors. This mechanism was tested using an in vivo model with subcutaneously implanted U87MG tumors from mice treated with CQ in combination with TMZ. Results Knockdown of the autophagy-associated proteins (GRP78 and Beclin) or treatment with the autophagy inhibitor, 3-methyl adenine (3-MA), blocked autophagosome formation and reduced CQ cytotoxicity, suggesting that autophagosome accumulation precedes CQ-induced cell death. In contrast, blocking autophagosome formation with knockdown of GRP78 or treatment with 3-MA enhanced TMZ cytotoxicity, suggesting that the autophagy pathway protects from TMZ-induced cytotoxicity. CQ in combination with TMZ significantly increased the amounts of LC3B-II (a marker for autophagosome levels), CHOP/GADD-153, and cleaved PARP (a marker for apoptosis) over those with untreated or individual drug-treated glioma cells. These molecular mechanisms seemed to take place in vivo as well. Subcutaneously implanted U87MG tumors from mice treated with CQ in combination with TMZ displayed higher levels of CHOP/GADD-153 than did untreated or individual drug-treated tumors. Conclusions Taken together, these results demonstrate that CQ blocks autophagy and triggers endoplasmic reticulum stress, thereby increasing the chemosensitivity of glioma cells to TMZ.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zi-Yin Yang ◽  
Zi-Hao Liu ◽  
Ya-Nan Zhang ◽  
Chen Li ◽  
Lei Liu ◽  
...  

Abstract Background Schistosomiasis is a debilitating and neglected tropical disease for which praziquantel (PZQ) remains the first-choice drug for treatment and control of the disease. In our previous studies, we found that the patented compound DW-3-15 (patent no. ZL201110142538.2) displayed significant and stabilized antiparasitic activity through a mechanism that might be distinct from PZQ. Here, we investigated the antischistosomal efficacy of PZQ combined with DW-3-15 against schistosomula and adult worms of Schistosoma japonicum in vitro and in vivo, to verify whether there was a synergistic effect of the two compounds. Methods The antischistosomal efficacy of PZQ combined with DW-3-15 in comparison with an untreated control and monotherapy group against schistosomula and adult worms was assessed both in vitro and in vivo. Parasitological studies, scanning electron microscopy, combination index, and histopathological analysis were used for the assessment. Results The results showed significantly reduced viability of schistosomes, achieving 100% viability reduction for juveniles and males by combination chemotherapy using PZQ together with DW-3-15 in vitro. The combination index was 0.28, 0.27, and 0.53 at the higher concentration of PZQ combined with DW-3-15 against juveniles, males, and females, respectively, indicating that the two compounds display strong synergism. Scanning electron microscopy observations also demonstrated that the compound combination induced more severe and extensive alterations to the tegument and subtegument of S. japonicum than those with each compound alone. In vivo, compared with the single-compound-treated group, the group treated with the higher-dose combination demonstrated the best schistosomicidal efficacy, with significantly reduced worm burden, egg burden, and granuloma count and area, which was evident against schistosomula and adult worms. Conclusions Our study provides a potential novel chemotherapy for schistosomiasis caused by S. japonicum. It would improve the antischistosomal effect on schistosomula and adult worms of S. japonicum, and decrease individual dosages. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document