scholarly journals In Situ Electrochemical Cells to Study the Oxygen Evolution Reaction by Near Ambient Pressure X-ray Photoelectron Spectroscopy

2018 ◽  
Vol 61 (20) ◽  
pp. 2064-2084 ◽  
Author(s):  
Verena Streibel ◽  
Michael Hävecker ◽  
Youngmi Yi ◽  
Juan J. Velasco Vélez ◽  
Katarzyna Skorupska ◽  
...  
2017 ◽  
Vol 139 (26) ◽  
pp. 8960-8970 ◽  
Author(s):  
Marco Favaro ◽  
Jinhui Yang ◽  
Silvia Nappini ◽  
Elena Magnano ◽  
Francesca M. Toma ◽  
...  

2021 ◽  
Author(s):  
Chengfei Li ◽  
Jia-Wei Zhao ◽  
Ling-Jie Xie ◽  
Jin-Qi Wu ◽  
Qian Ren ◽  
...  

Abstract Metal-organic frameworks (MOFs) with carboxylate ligands as co-catalysts are very efficient for oxygen evolution reaction (OER). However, the role of local adsorbed carboxylate ligands around the in situ transformed metal (oxy)hydroxides during OER is often overlooked. Here we reveal the extraordinary role and mechanism of surface adsorbed carboxylate ligands on bi/trimetallic layered double hydroxides (LDHs)/MOFs for OER catalytic activity enhancement. The results of X-ray photoelectron spectroscopy (XPS), synchrotron X-ray absorption spectroscopy and theoretical calculations show that the carboxylic groups around metal (oxy)hydroxides can efficiently induce the interfacial electron redistribution, facilitate abundant high-valence state of nickel species with partial distorted octahedral structure, and optimize the d-band center together with the beneficial Gibbs free energy of intermediate. Furthermore, the results of in-situ Raman and FI-IR spectra firstly reveal that the surface adsorbed carboxylate ligands as Lewis base can promote the sluggish OER kinetics by accelerating proton transfer and facilitating adsorption/ activation/dissociation of hydroxyl ions (OH−). Our findings will offer unique insights into the reason for disclosing the origin of excellent electrocatalytic activity for MOF/NiFe-LDHs catalysts.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marc Benjamin Hahn ◽  
Paul M. Dietrich ◽  
Jörg Radnik

AbstractIonizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further.


2019 ◽  
Vol 48 (21) ◽  
pp. 7122-7129 ◽  
Author(s):  
Chia-Jui Chang ◽  
You-Chiuan Chu ◽  
Hao-Yu Yan ◽  
Yen-Fa Liao ◽  
Hao Ming Chen

The state-of-art RuO2 catalyst for the oxygen evolution reaction (OER) is measured by using in situ X-ray absorption spectroscopy (XAS) to elucidate the structural transformation during catalyzing the reaction in acidic and alkaline conditions.


2017 ◽  
Vol 53 (37) ◽  
pp. 5231-5234 ◽  
Author(s):  
Jack Chun-Ren Ke ◽  
Alex S. Walton ◽  
David J. Lewis ◽  
Aleksander Tedstone ◽  
Paul O'Brien ◽  
...  

Near-ambient-pressure X-ray photoelectron spectroscopy enables the study of the reaction of in situ-prepared methylammonium lead iodide (MAPI) perovskite at realistic water vapour pressures for the first time.


2015 ◽  
Vol 174 ◽  
pp. 532-541 ◽  
Author(s):  
Benedetto Bozzini ◽  
Matteo Amati ◽  
Patrizia Bocchetta ◽  
Simone Dal Zilio ◽  
Axel Knop-Gericke ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaili Zhang ◽  
Xinhui Xia ◽  
Shengjue Deng ◽  
Yu Zhong ◽  
Dong Xie ◽  
...  

Abstract Controllable synthesis of highly active micro/nanostructured metal electrocatalysts for oxygen evolution reaction (OER) is a particularly significant and challenging target. Herein, we report a 3D porous sponge-like Ni material, prepared by a facile hydrothermal method and consisting of cross-linked micro/nanofibers, as an integrated binder-free OER electrocatalyst. To further enhance the electrocatalytic performance, an N-doping strategy is applied to obtain N-doped sponge Ni (N-SN) for the first time, via NH3 annealing. Due to the combination of the unique conductive sponge structure and N doping, the as-obtained N-SN material shows improved conductivity and a higher number of active sites, resulting in enhanced OER performance and excellent stability. Remarkably, N-SN exhibits a low overpotential of 365 mV at 100 mA cm−2 and an extremely small Tafel slope of 33 mV dec−1, as well as superior long-term stability, outperforming unmodified sponge Ni. Importantly, the combination of X-ray photoelectron spectroscopy and near-edge X-ray adsorption fine structure analyses shows that γ-NiOOH is the surface-active phase for OER. Therefore, the combination of conductive sponge structure and N-doping modification opens a new avenue for fabricating new types of high-performance electrodes with application in electrochemical energy conversion devices.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1000
Author(s):  
Norbert Köpfle ◽  
Kevin Ploner ◽  
Peter Lackner ◽  
Thomas Götsch ◽  
Christoph Thurner ◽  
...  

Starting from subsurface Zr0-doped “inverse” Pd and bulk-intermetallic Pd0Zr0 model catalyst precursors, we investigated the dry reforming reaction of methane (DRM) using synchrotron-based near ambient pressure in-situ X-ray photoelectron spectroscopy (NAP-XPS), in-situ X-ray diffraction and catalytic testing in an ultrahigh-vacuum-compatible recirculating batch reactor cell. Both intermetallic precursors develop a Pd0–ZrO2 phase boundary under realistic DRM conditions, whereby the oxidative segregation of ZrO2 from bulk intermetallic PdxZry leads to a highly active composite layer of carbide-modified Pd0 metal nanoparticles in contact with tetragonal ZrO2. This active state exhibits reaction rates exceeding those of a conventional supported Pd–ZrO2 reference catalyst and its high activity is unambiguously linked to the fast conversion of the highly reactive carbidic/dissolved C-species inside Pd0 toward CO at the Pd/ZrO2 phase boundary, which serves the role of providing efficient CO2 activation sites. In contrast, the near-surface intermetallic precursor decomposes toward ZrO2 islands at the surface of a quasi-infinite Pd0 metal bulk. Strongly delayed Pd carbide accumulation and thus carbon resegregation under reaction conditions leads to a much less active interfacial ZrO2–Pd0 state.


Sign in / Sign up

Export Citation Format

Share Document