Chemical composition, in vitro gas production, methane production and fatty acid profile of canola silage (Brassica napus) with four levels of molasses

2019 ◽  
Vol 51 (6) ◽  
pp. 1579-1584
Author(s):  
Daniel Limón-Hernández ◽  
Adolfo Armando Rayas-Amor ◽  
Anastacio García-Martínez ◽  
Julieta Gertrudis Estrada-Flores ◽  
Mayra Núñez López ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1784
Author(s):  
Beatriz Ligoski ◽  
Lucas Ferreira Gonçalves ◽  
Flavio Lopes Claudio ◽  
Estenio Moreira Alves ◽  
Ana Maria Krüger ◽  
...  

Legume–grass intercropping systems are a sustainable option to improve nutritional quality of animal feed and decrease livestock greenhouse gas emissions. Thus, the present study evaluated yield, chemical composition and in vitro gas production of silages produced with intercropped palisade grass (Urochloa brizantha.(A.Rich.) R.D.Webster), pigeon pea (Cajanus cajan cv. Super N) and corn (Zea mays. L.). Forage was harvested and placed inside micro-silos, which were opened after 100 days and samples were collected for chemical composition and in vitro gas production analyses. Intercropped silage had higher crude protein, acid detergent fiber, and lignin content than corn silage. Moreover, intercropped silage decreased total gas and methane production. Therefore, intercropped silage showed potential to increase conserved feed nutritional quality and reduce methane emissions in livestock production systems.


2003 ◽  
Vol 2003 ◽  
pp. 157-157
Author(s):  
A. Bortolozzo ◽  
D. K. Lovett ◽  
S. Lovell ◽  
L. Stack ◽  
F. P. O’Mara

The in vivo determination of methane (CH4) production requires specialist equipment which is costly to maintain. Whilst the in vitro gas production technique has been demonstrated to show potential to rank diets for their methanongenic potential at maintenance planes of nutrition (Moss and Givens, 1997) no study has investigated this relationship when feedstuffs are fed ad libitum. The objective of this study was to assess the ability of the technique to predict in vivo CH4 production and animal performance from six diets differing in their chemical composition.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 786 ◽  
Author(s):  
Florencia Garcia ◽  
Darío Colombatto ◽  
M. Alejandra Brunetti ◽  
M. José Martínez ◽  
M. Valeria Moreno ◽  
...  

There is interest in identifying natural products capable of manipulating rumen microbial activity to develop new feed additives for ruminant nutrition as a strategy to reduce methane. Two trials were performed using the in vitro gas production technique to evaluate the interaction of substrate (n = 5) and additive (n = 6, increasing doses: 0, 0.3, 3, 30, and 300 µL/L of essential oils—EO—of Lippia turbinata or Tagetes minuta, and monensin at 1.87 mg/L). The two EO utilized were selected because they differ markedly in their chemical composition, especially in the proportion of oxygenated compounds. For both EO, the interaction between the substrate and additive was significant for all variables; however, the interaction behaved differently for the two EO. Within each substrate, the response was dose-dependent, without effects at a low level of EO and a negative outcome at the highest dose. The intermediate dose (30 µL/L) inhibited methane with a slight reduction on substrate digestibility, with L. turbinata being more effective than T. minuta. It is concluded that the effectiveness of the EO to reduce methane production depends on interactions between the substrate that is fermented and the additive dose that generates different characteristics within the incubation medium (e.g., pH); and thus, the chemical nature of the compounds of the EO modulates the magnitude of this response.


2019 ◽  
Vol 59 (4) ◽  
pp. 709 ◽  
Author(s):  
F. Garcia ◽  
P. E. Vercoe ◽  
M. J. Martínez ◽  
Z. Durmic ◽  
M. A. Brunetti ◽  
...  

The aim of the present study was to evaluate the impact of essential oils (EO) from Lippia turbinata (LT) and Tagetes minuta (TM) as well as the rotation of both EO on fermentation parameters in vitro. Daily addition of LT, TM, or a 3-day rotation between them (TM/LT), as well as a control (without EO), was evaluated using the rumen simulation technique (Rusitec). The experiment lasted 19 days, with a 7-day adaptation period, followed by 12 days of treatment (Days 0–12). The EO were dissolved in ethanol (70% vol/vol) to be added daily to fermenters (300 μL/L) from Day 0. Daily measurements included methane concentration, total gas production, apparent DM disappearance and pH, which started 2 days before the addition of treatments. On Days 0, 4, 8 and 12 apparent crude protein disappearance and neutral detergent fibre disappearance, ammonia and volatile fatty acid concentration and composition were determined. Methane production was significantly inhibited shortly after addition of both EO added individually, and persisted over time with no apparent adaptation to EO addition. The TM/LT treatment showed a similar effect on methane production, suggesting that rotating the EO did not bring further improvements in reduction or persistency compared with the inclusion of the EO individually. Gas production, total volatile fatty acid concentration and composition and apparent crude protein disappearance were not affected by EO addition. Compared with the control, a 5% reduction of apparent DM disappearance and a 15% reduction of neutral detergent fibre disappearance were observed with the addition of EO. Only TM and TM/LT reduced ammonia concentration. Given the significant and persistent antimethanogenic activity of both EO, and the potential of T. minuta to modify nitrogen metabolism, EO from these plant species are of interest for developing new feed additives with potential application in ruminant nutrition that are also likely to be acceptable to consumers.


2006 ◽  
Vol 5 (5) ◽  
pp. 497-500 ◽  
Author(s):  
O.J. Babayemi . ◽  
R.A. Hamzat . ◽  
M.A. Bamikole . ◽  
N.F. Anurudu . ◽  
O.O.Olomola .

Sign in / Sign up

Export Citation Format

Share Document