Sustainable, Just, Equal, and Optimal Groundwater Management Strategies to Cope with Climate Change: Insights from Brazil

2010 ◽  
Vol 24 (13) ◽  
pp. 3731-3756 ◽  
Author(s):  
Fabio Zagonari
Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 627
Author(s):  
Duong H. Nong ◽  
An T. Ngo ◽  
Hoa P. T. Nguyen ◽  
Thuy T. Nguyen ◽  
Lan T. Nguyen ◽  
...  

We analyzed the agricultural land-use changes in the coastal areas of Tien Hai district, Thai Binh province, in 2005, 2010, 2015, and 2020, using Landsat 5 and Landsat 8 data. We used the object-oriented classification method with the maximum likelihood algorithm to classify six types of land uses. The series of land-use maps we produced had an overall accuracy of more than 80%. We then conducted a spatial analysis of the 5-year land-use change using ArcGIS software. In addition, we surveyed 150 farm households using a structured questionnaire regarding the impacts of climate change on agricultural productivity and land uses, as well as farmers’ adaptation and responses. The results showed that from 2005 to 2020, cropland decreased, while aquaculture land and forest land increased. We observed that the most remarkable decreases were in the area of rice (485.58 ha), the area of perennial crops (109.7 ha), and the area of non-agricultural land (747.35 ha). The area of land used for aquaculture and forest increased by 566.88 ha and 772.60 ha, respectively. We found that the manifestations of climate change, such as extreme weather events, saltwater intrusion, drought, and floods, have had a profound impact on agricultural production and land uses in the district, especially for annual crops and aquaculture. The results provide useful information for state authorities to design land-management strategies and solutions that are economic and effective in adapting to climate change.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1604
Author(s):  
Sun Hee Hong ◽  
Yong Ho Lee ◽  
Gaeun Lee ◽  
Do-Hun Lee ◽  
Pradeep Adhikari

Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas.


Author(s):  
Marianna Fenzi ◽  
Paul Rogé ◽  
Angel Cruz-Estrada ◽  
John Tuxill ◽  
Devra Jarvis

AbstractLocal seed systems remain the fundamental source of seeds for many crops in developing countries. Climate resilience for small holder farmers continues to depend largely on locally available seeds of traditional crop varieties. High rainfall events can have as significant an impact on crop production as increased temperatures and drought. This article analyzes the dynamics of maize diversity over 3 years in a farming community of Yucatán state, Mexico, where elevated levels of precipitation forced farmers in 2012 to reduce maize diversity in their plots. We study how farmers maintained their agroecosystem resilience through seed networks, examining the drivers influencing maize diversity and seed provisioning in the year preceding and following the 2012 climatic disturbance (2011–2013). We found that, under these challenging circumstances, farmers focused their efforts on their most reliable landraces, disregarding hybrids. We show that farmers were able to recover and restore the diversity usually cultivated in the community in the year following the critical climate event. The maize dynamic assessed in this study demonstrates the importance of community level conservation of crop diversity. Understanding farmer management strategies of agrobiodiversity, especially during a challenging climatic period, is necessary to promote a more tailored response to climate change in traditional farming systems.


2008 ◽  
Vol 32 (4) ◽  
pp. 439-461 ◽  
Author(s):  
B.J. Smith ◽  
M. Gomez-Heras ◽  
S. McCabe

The problem of the decay and conservation of stone-built heritage is a complex one, requiring input across many disciplines to identify appropriate remedial steps and management strategies. Over the past few decades, earth scientists have brought a unique perspective to this challenging area, drawing on traditions and knowledge obtained from research into landscape development and the natural environment. This paper reviews the crucial themes that have arisen particularly, although not exclusively, from the work of physical geographers — themes that have sought to correct common misconceptions held by the public, as well as those directly engaged in construction and conservation, regarding the nature, causes and controls of building stone decay. It also looks to the future, suggesting how the behaviour of building stones (and hence the work of stone decay scientists) might alter in response to the looming challenge of climate change.


Author(s):  
Samantha Wong

Climate change has been associated in phenological shifts for a variety of taxa. Amphibians, specifically the order Anura (frogs and toads), are considered particularly vulnerable due to their sensitivity to anthropogenic and environmental change. Previous research has documented shifts in the timing of anuran breeding that can be attributed, in part, to climate change, with potential implications for reproduction, survival, and development. This study aims to investigate how air temperature is associated with anuran calling phenology. I will examine the temporal trends in spring and summer air temperature in a lake in northern Ontario, Canada. and quantify seasonal patterns of calling anuran species using acoustic monitoring over a four-month period. I predict that there will be interspecific variation in peak calling associated with air temperature. Additionally, I expect to find asymmetrical association between air temperature and anuran species’ calling behaviour – wherein prolonged breeding species will have a larger optimal temperature range for calling compared to explosive breeding species. The findings of this research will aid in future conservation and provide insight for management strategies of anurans in Canada in response to anticipated climate warming.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1668 ◽  
Author(s):  
J. Zabalza-Martínez ◽  
S. Vicente-Serrano ◽  
J. López-Moreno ◽  
G. Borràs Calvo ◽  
R. Savé ◽  
...  

This paper evaluates the response of streamflow in a Mediterranean medium-scaled basin under land-use and climate change scenarios and its plausible implication on the management of Boadella–Darnius reservoir (NE Spain). Land cover and climate change scenarios supposed over the next several decades were used to simulate reservoir inflow using the Regional Hydro-Ecologic Simulation System (RHESsys) and to analyze the future impacts on water management (2021–2050). Results reveal a clear decrease in dam inflow (−34%) since the dam was operational from 1971 to 2013. The simulations obtained with RHESsys show a similar decrease (−31%) from 2021 to 2050. Considering the ecological minimum flow outlined by water authorities and the projected decrease in reservoir’s inflows, different water management strategies are needed to mitigate the effects of the expected climate change.


2021 ◽  
pp. 545-570
Author(s):  
Marcos Giongo ◽  
Micael Moreira Santos ◽  
Damiana Beatriz da Silva ◽  
Jader Nunes Cachoeira ◽  
Giovanni Santopuoli

AbstractBrazil is the second largest forested country in the world with a high level of naturalness and biodiversity richness, playing a significant role in the adoption of mitigation and adaptation strategies to climate change. Although the Brazilian federal government is mainly responsible for the protection of natural ecosystems, the decentralization process, which demands competences of the states and municipalities, allowed the establishment of several agencies and institutions dealing with monitoring, assessment, and management of forest ecosystems through a complex and interrelated number of forest policies. Nevertheless, the deforestation rate, with a consequent loss of biodiversity and ecosystem services, represents critical challenges, attracting worldwide attention. The variety of mitigation and adaptation measures adopted over the years represents viable tools to face climate change and to promote climate-smart forestry in Brazil. Notwithstanding the positive effects achieved in the last decade, a better coordination and practical implementation of climate-smart forestry strategies is required to reach nationally and internationally agreed objectives.This chapter aims to depict the Brazilian forestry sector, highlighting the management strategies adopted overtime to counteract climate change.


Sign in / Sign up

Export Citation Format

Share Document