Effects of Inter-Basin Water Transfer Project Operation for Emergency Water Supply

2020 ◽  
Vol 34 (8) ◽  
pp. 2535-2548
Author(s):  
Youngje Choi ◽  
Jaehwang Ahn ◽  
Jungwon Ji ◽  
Eunkyung Lee ◽  
Jaeeung Yi
2020 ◽  
Author(s):  
Majed Khadem ◽  
Richard Dawson ◽  
Claire Walsh

<p>Uneven distribution of water resources in the face of climate change and population growth is imposing increasing threats to communities as well as challenging decision-makers. Inter-basin water transfer (IBT) schemes have been appreciated as one of the common approaches to tackle this issue. This work presents a framework for climate impact assessment and feasibility study for IBTs. The framework investigates negative impacts of IBTs on the donor and receiving bodies. This is done by calculating hydrological drought risk and environmental risks to freshwater habitats under 1200 future climatic scenarios and two different transfer scenarios. 2.2 Km resolution time-series from UK’s Met Office most recent climate projection (UKCP18) is used as the input scenario and a water resources model developed at Newcastle University is implemented to determine allocation and calculate the above risk factors. This work considers transferring raw water from England’s water-rich North East to its water-stressed South East as the case study. This case was chosen because England, with no major IBT scheme, is experiencing challenges from more frequent climate change and increasing demand for water in London. Additionally, organisations such as National Infrastructure Commission (NIC) and Environment Agency (EA) have encouraged England’s water companies to consider IBT as one of the options to improve water supply resilience. In this study, we assess schemes to transfer water using the existing infrastructures of water companies located from North East to South East of England to minimise costs and environmental impacts. Results suggest that, under a wide range of future scenarios, meeting London’s annual water shortage through transfers from the North East during wet season of each year not only increases London’s water supply resilience but also boosts flood resilience in the North East donor basin while still meeting environmental requirements.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Siyu Cai ◽  
Long Sun ◽  
Qingtao Liu ◽  
Yi Ji ◽  
Hao Wang

Inter-basin water transfer projects play an important role in allocating water resources that vary both in temporal and spatial scale while supporting regional development. In the practical operation of inter-basin water transfer projects, high water level and less inflow runoff would result in water supply destruction, while low water level and more inflow runoff would cause abandoned water. How to play the compensation roles of hydrological characteristics and storage capacities of multi-reservoirs to maximize the utilization efficiency of water resources, the key is to select the basis for the decision-making of starting water transfer process. In this paper, we selected the “Datong-Huangshui” water transfer project as the research subject, analyzed the composition of the inter-basin water transfer system, and constructed a dispatching rule extraction model including water transfer rules, water diversion rules, and water supply rules. Then the NSGA-II was used to solve the multi-objective optimization model to obtain the Pareto frontier solution set of the dispatching rules. Finally, the optimal operation scheme was determined and discussed according to the scheduling scheme decision model. The model itself was based on the gray target model and prospect theory. We found that: (1) The optimal target frontier obtained by the two-dimensional scheduling diagram and the hedging rules for water supply was closer to the theoretical optimal frontier of the multi-objective problem. This result indicated that the two-dimensional scheduling diagram and the hedging rules for water supply could better guide the water diversion operation of inter-basin water transfer projects. (2) Based on the multi-objective optimal operation schemes set, the OPT scheme obtained by the scheduling scheme decision model using gray target model and prospect theory could generate 359 million Kwh. At the same time, it could guarantee 90% of municipal and industrial water supply and 85% of agricultural water supply.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2513 ◽  
Author(s):  
Wanderbeg Correia de Araujo ◽  
Karla Oliveira Esquerre ◽  
Oz Sahin

In recent centuries, water consumption rates have more than doubled and the population growth rate is rising constantly. As a result, water scarcity is now one of the main problems to be faced, mainly in semiarid regions. In light of such a dilemma, this study aims to develop a system dynamics model in order to evaluate the water system in the semiarid region of the state of Paraíba—located in the Brazilian Northeast—and it focus on the following two issues: (1) measures that could have been taken with respect to the recent water crisis (2012–2017); (2) simulating water availability up to 2025. It was observed that, despite the options of in-demand management tools being efficient solutions for water scarcity in the short term (e.g., the influence of scarcity-based tariffs in reducing water use), such tools would not suffice in a context of severe drought within a water-providing system that depends heavily on rainfall. However, certain policies involving water-supply management (e.g., wastewater reuse and inter-basin water transfer) are very effective in maintaining water supply and avoiding a water collapse in the region. Furthermore, employing the Monte Carlo approach in simulating the system dynamic proved that the water supply is sensitive to scarcity-based tariffs, wastewater reuse, and inter-basin water transfer. An important advancement in this study was the simulation of a methodology for pricing that encourages rational use of water-based on its scarcity, which in turn increases revenue and investment in other water-management strategies.


2018 ◽  
Vol 246 ◽  
pp. 01006
Author(s):  
Jigang Ma ◽  
Haofang Wang ◽  
Libin Zhao ◽  
Song Wei

Water resources optimal regulation is an important means to mitigate the shortage of water resources and promote social and economic sustainable development in regions or watershed. With the rapid development of urban population and industrial and agricultural production in recent years, the shortage of water is becoming more and more serious in Jiaodong area. The four regions with serious water shortage including Weifang, Qingdao, Yantai and Weihai in Jiaodong area are the typical research areas. In combination with the water transfer project of Yellow river to Qingdao and the south-to-north water transfer project, the water diversion is carried out to alleviate the contradiction between water supply and demand of Jiaodong area. The year of 2014 deemed as the base year and the years of 2020 and 2025 are the planning years. Based on the supply and demand analysis of water resources, an optimal regulation model is built with the minimum total water shortage considering the constraints of water supply capacity of project, water distribution capacity and minimum water supply of bleeds and so on. The optimal regulation schemes are obtained by solution model using MATLAB programming. The results show that water shortage rate of the four cities decreases significantly in annual regulation. For different planning years, guarantee rate of 50%, 75% and 95%,the total water shortage rate will be reduced by 15.35%、15.75% and 16.85% respectively in 2020, and in 2025the total water shortage rate will be reduced by 13.27%、13.26% and 14.19% respectively. Therefore the water resources optimal regulation of inter-basin water transfer project can effectively mitigate water scarcity and the contradiction between water supply and demand in Jiaodong area.


2020 ◽  
Vol 51 (5) ◽  
pp. 1120-1135
Author(s):  
Xingchen Wei ◽  
Hongbo Zhang ◽  
Vijay P. Singh ◽  
Chiheng Dang ◽  
Shuting Shao ◽  
...  

Abstract Under changing environment, the feasibility and potential impact of an inter-basin water transfer project can be evaluated by employing the coincidence probability of runoff in water sources area (WSA), water receiving area (WRA), and the downstream impacted area (DIA). Using the Han River to Wei River Water Transfer Project (HWWTP) in China as an example, this paper computed the coincidence probability and conditional probability of runoff in WSA, WRA and DIA with the copula-based multivariate joint distribution and quantified their acceptable and unfavorable encounter probabilities for evaluating the water supply risk of the water transfer project and exploring its potential impact on DIA. Results demonstrated that the most adverse encounter probability (dry–dry–dry) was 26.09%, illustrating that this adverse situation could appear about every 4 years. The acceptable and unfavorable probabilities in all encounters were 44.83 and 55.17%, respectively, that is the unfavorable situation would be dominant, implying flood and drought risk management should be paid greater attention in project operation. The conditional coincidence probability (dry WRA & dry DIA if dry WSA) was close to 70%, indicating a requirement for an emergency plan and management to deal with potential drought risk.


2019 ◽  
Vol 11 (7) ◽  
pp. 2044 ◽  
Author(s):  
Jing Tian ◽  
Dedi Liu ◽  
Shenglian Guo ◽  
Zhengke Pan ◽  
Xingjun Hong

Inter-basin water transfer project is an effective engineering countermeasure to alleviate the pressure of water supply in water-deficient areas and balance the uneven distribution of water resources. To assess the impacts of inter-basin water transfer projects on optimal water resources allocation, an integrated water resources management framework is proposed, and is applied to the middle and lower reaches of the Hanjiang River Basin in China. Firstly, future water demands are analyzed as inputs. Then, a multi-objective water resources allocation model is formulated mitigating the negative impacts of water transfer projects on downstream water quantity and quality by using the non-dominated sorting genetic algorithm-II (NSGA-II). Finally, the indicators of water supply reliability, vulnerability and resilience are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: (1) the reliability and resilience of the water donor system will be gradually reduced while the vulnerability will be increased with the expansion of water transfer projects and the increase of water demand, (2) water supply risk is likely to increase in all zones (because zones at the boundary cannot obtain sufficient water due to limitations of local inflow and reservoir operation, while the amount of water available in the zones along the mainstream river is directly decreased by the water transfer projects), (3) more water supply measures and compensation measures will need to be implemented in the water donor areas. The framework proposed in this study to evaluate the comprehensive impact of inter-basin water transfer projects is conducive to water resources management.


2012 ◽  
Vol 524-527 ◽  
pp. 2731-2734
Author(s):  
Chen Xia Gu

As socio-economic is developing rapidly, the problems between water resource supply and demand is prominent. Small inter-basin water transfer is gradually increasing in order to solve water shortage. In this paper, the development position of regional socio-economic, the potential of water resources, water supply and demand balance are discussed, the necessity of inter-basin transfers project is studied and discussed comprehensively, the conclusion is authentic, and the method of this paper has reference for similar project.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
José Etham de Lucena Barbosa ◽  
Juliana dos Santos Severiano ◽  
Hérika Cavalcante ◽  
Daniely de Lucena-Silva ◽  
Camila Ferreira Mendes ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2564 ◽  
Author(s):  
Anderson Passos de Aragão ◽  
Patrícia Teixeira Leite Asano ◽  
Ricardo de Andrade Lira Rabêlo

The Hydrothermal Coordination problem consists of determining an operation policy for hydroelectric and thermoelectric plants within a given planning horizon. In systems with a predominance of hydraulic generation, the operation policy to be adopted should specify the operation of hydroelectric plants, so that hydroelectric resources are used economically and reliably. This work proposes the implementation of reservoir operation rules, using inter-basin water transfer through an optimization model based on Network Flow and Particle Swarm Optimization (PSO). The proposed algorithm aims to obtain an optimized operation policy of power generation reservoirs and consequently to maximize the hydroelectric benefits of the hydrothermal generation system, to reduce the use of thermoelectric plants, the importation and/or energy deficit and to reduce the cost associated with meeting the demand and reduce CO2 emissions from combustion of fossil fuels used by thermoelectric plants. In order to illustrate the efficiency and effectiveness of the proposed approach, it was evaluated by optimizing two case studies using a system with four hydroelectric plants. The first case study does not consider transfer and water and the second case study uses water transfer between rivers. The obtained results illustrate that the proposed model allowed to maximize the hydroelectric resources of a hydrothermal generation system with economy and reliability.


Sign in / Sign up

Export Citation Format

Share Document