scholarly journals Effects of ultra-long fermentation time on the microbial community and flavor components of light-flavor Xiaoqu Baijiu based on fermentation tanks

Author(s):  
Jie Tang ◽  
Yuancai Liu ◽  
Bin Lin ◽  
Hao Zhu ◽  
Wei Jiang ◽  
...  
2018 ◽  
Vol 76 (3) ◽  
pp. 209-218 ◽  
Author(s):  
Guangsen Fan ◽  
Baoguo Sun ◽  
Zhilei Fu ◽  
Yanqiu Xia ◽  
Mingquan Huang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2223
Author(s):  
Zhi Wang ◽  
Ying Guo ◽  
Weiwei Wang ◽  
Liumeng Chen ◽  
Yongming Sun ◽  
...  

Anaerobic digestion with corn straw faces the problems of difficult degradation, long fermentation time and acid accumulation in the high concentration of feedstocks. In order to speed up the process of methane production, corn straw treated with sodium hydroxide was used in thermophilic (50 °C) anaerobic digestion, and the effects of biochar addition on the performance of methane production and the microbial community were analyzed. The results showed that the cumulative methane production of all treatment groups reached over 75% of the theoretical methane yield in 7 days and the addition of 4% biochar increased the cumulative methane production by 6.75% compared to the control group. The addition of biochar also decreased the number of biogas and methane production peaks from 2 to 1, and had a positive effect on shortening the digestion start-up period and reducing the fluctuation of biogas production during the digestion process. The addition of 4% biochar increased the abundance of the bacterial family Peptococcaceae throughout the digestion period, promoting the hydrolysis rate of corn straw. The dominant archaeal genus Methanosarcina was significantly more abundant at the peak stage and the end of methane production with 4% biochar added compared to the control group.


Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 87
Author(s):  
Su Bin Hyun ◽  
Chang-Gu Hyun

In this study, we investigated the microbial community and its correlation with anti-inflammatory effects during the fermentation procedure of shindari. Since shindari is traditionally manufactured through a fermentation process of 3–4 days in summer or 5–6 days in winter, the shindari materials applied in this study were fermented for 1, 3, and 5 days, respectively. Microbial community structure in the shindari manufacturing process was analyzed by Illumina MiSeq sequencing. Results revealed different fermentation time had different influences on the community structure and microbial diversity in the shindari process. Ultimately, we found that pathogenic bacteria such as Enterococcus durans (9.3%) and Enterobacter asburiae (4.5%) dominate the shindari fermented for 1 day, while samples with a fermentation period of more than 3 days occupied lactic acid bacteria such as Pediococcus sp. (97.1%). In addition, to study the relationship between fermentation period and anti-inflammatory effect in the shindari manufacturing process, we applied RAW264.7 cells, a classic cell model for inflammation studies. First, we prepared an ethyl acetate extract of shindari fermented for 1 (S1), 3 (S3), or 5 days (S5), and then it was confirmed that all of these extracts inhibited the nitric oxide (NO) production in a concentration-dependent manner. In addition, these inhibitory effects were correlated with the suppressive effect of shindari extracts against overexpression of inducible nitric oxide synthase (iNOS). Furthermore, S3 and S5 also inhibited the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. Overall, the anti-inflammatory effect of S3 was suggested to be mediated through the negative regulation of mitogen-activated protein kinase signaling (MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amy Atter ◽  
Maria Diaz ◽  
Kwaku Tano-Debrah ◽  
Angela Parry-Hanson Kunadu ◽  
Melinda J. Mayer ◽  
...  

Hausa koko is an indigenous porridge processed from millet in Ghana. The process involves fermentation stages, giving the characteristic organoleptic properties of the product that is produced largely at a small-scale household level and sold as a street food. Like many other indigenous foods, quality control is problematic and depends on the skills of the processor. In order to improve the quality of the product and standardize the process for large-scale production, we need a deeper understanding of the microbial processes. The aim of this study is to investigate the microbial community involved in the production of this traditional millet porridge and the metabolites produced during processing. High-throughput amplicon sequencing was used to identify the bacterial (16S rRNA V4 hypervariable region) and fungal [Intergenic Transcribed Spacer (ITS)] communities associated with the fermentation, while nuclear magnetic resonance (NMR) was used for metabolite profiling. The bacterial community diversity was reduced during the fermentation processes with an increase and predominance of lactobacilli. Other dominant bacteria in the fermentation included Pediococcus, Weissella, Lactococcus, Streptococcus, Leuconostoc, and Acetobacter. The species Limosilactobacillus fermentum and Ligilactobacillus salivarius accounted for some of the diversities within and between fermentation time points and processors. The fungal community was dominated by the genus Saccharomyces. Other genera such as Pichia, Candida, Kluyveromyces, Nakaseomyces, Torulaspora, and Cyberlindnera were also classified. The species Saccharomyces cerevisiae, Stachybotrys sansevieriae, Malassezia restricta, Cyberlindnera fabianii, and Kluyveromyces marxianus accounted for some of the diversities within some fermentation time points. The species S. sansevieria and M. restricta may have been reported for the first time in cereal fermentation. This is the most diverse microbial community reported in Hausa koko. In this study, we could identify and quantify 33 key different metabolites produced by the interactions of the microbial communities with the millet, composed of organic compounds, sugars, amino acids and intermediary compounds, and other key fermentation compounds. An increase in the concentration of organic acids in parallel with the reduction of sugars occurred during the fermentation process while an initial increase of amino acids followed by a decrease in later fermentation steps was observed.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 372 ◽  
Author(s):  
Zhanzheng Gao ◽  
Zhengyun Wu ◽  
Wenxue Zhang

As the main by-product of Chinese strong-flavor liquor, yellow water plays an important role in the formation of flavor components. Yellow water from different fermentation periods (30th day, 45th day, 60th day) was selected to analyze the aroma components by Headspace solid phase micro-extraction Gas Chromatography–Mass Spectrometry, and the microorganism community was evaluated by high-throughput sequencing technology and bioinformatics analysis of DNA. As the fermentation time was prolonged, the main flavor components significantly increased, and the amount of the common microbial population between yellow water and pit mud increased gradually. Among the common microorganisms, Lactobacillus accounted for the largest proportion, at about 56.96%. The microbes in the yellow water mainly belonged to Firmicutes. The abundance of Bacilli (the main bacteria) gradually decreased with time, at 87.60% at the 30th day down to 68.87% at the 60th day, but Clostridia gradually increased from 10.29% to 27.48%. At the genus level, some microbes increased significantly from the 30th day to 60th day, such as Caproiciproducens, which increased from 2.65% to 6.30%, and Sedimentibacter, increasing from 0.47% to 2.49%. RDA analysis indicated that the main aroma components were positively correlated with Clostridia and negatively correlated with Bacilli.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


2020 ◽  
Vol 158 (3) ◽  
pp. S66
Author(s):  
Venu Lagishetty ◽  
Nerea Arias ◽  
Tien Dong ◽  
Meg Hauer ◽  
William Katzka ◽  
...  

2009 ◽  
Vol 27 (4) ◽  
pp. 385-387
Author(s):  
W. D. Eaton ◽  
B. Wilmot ◽  
E. Epler ◽  
S. Mangiamelli ◽  
D. Barry

Sign in / Sign up

Export Citation Format

Share Document