Anisotropic Mechanical Properties of SAC Solder Joints in Microelectronic Packaging and Prediction of Uniaxial Creep Using Nanoindentation Creep

2017 ◽  
Vol 57 (4) ◽  
pp. 603-614 ◽  
Author(s):  
M. Hasnine ◽  
J.C. Suhling ◽  
B.C. Prorok ◽  
M.J. Bozack ◽  
P. Lall
2013 ◽  
Vol 25 (4) ◽  
pp. 195-208 ◽  
Author(s):  
Krystyna Bukat ◽  
Janusz Sitek ◽  
Marek Koscielski ◽  
Wojciech Niedzwiedz ◽  
Anna Mlozniak ◽  
...  

Author(s):  
Abdullah Fahim ◽  
Sudan Ahmed ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Exposure of lead free solder joints to high temperature isothermal aging conditions leads to microstructure evolution, which mainly includes coarsening of the intermetallic (IMC) phases. In our previous work, it was found that the coarsening of IMCs led to degradation of the overall mechanical properties of the SAC solder composite consisting of β-Sn matrix and IMC particles. However, it is not known whether the isothermal aging changes properties of the individual β-Sn and IMC phases, which could also be affecting to the overall degradation of properties. In this study, the aging induced variations of the mechanical properties of the β-Sn phase, and of Sn-Cu IMC particles in SAC solder joints have been explored using nanoindentation. SAC solder joints extracted from SuperBGA (SBGA) packages were aged for different time intervals (0, 1, 5, 10 days) at T = 125 °C. Nanoindentation test samples were prepared by cross sectioning the solder joints, and then molding them in epoxy and polishing them to prepare the joint surfaces for nanoindentation. Multiple β-Sn grains were identified in joints using optical polarized microscopy and IMCs were also observed. Individual β-Sn grains and IMC particles were then indented at room temperature to measure their mechanical properties (elastic modulus and hardness) and time dependent creep deformations. Properties measured at different aging time were then compared to explore aging induced degradations of the individual phases. The properties of the individual phases did not show significant degradation. Thus, IMC coarsening is the primary reason for the degradation of bulk solder joint properties, and changes of the properties of the individual phases making up the lead free solder material are negligible.


Author(s):  
Mohammad Hasnine ◽  
Muhannad Mustafa ◽  
Jing Zou ◽  
Jeffrey C. Suhling ◽  
Barton C. Prorok ◽  
...  

The mechanical properties of a lead free solder are strongly influenced by its microstructure, which is controlled by its thermal history including solidification rate and thermal aging after solidification. Due to aging phenomena, the microstructure, mechanical response, and failure behavior of lead free solder joints in electronic assemblies are constantly evolving when exposed to isothermal and/or thermal cycling environments. Through uniaxial testing of miniature bulk solder tensile specimens, we have previously demonstrated that large changes occur in the stress-strain and creep behaviors of lead free solder alloys with aging. Complementary studies by other research groups have verified aging induced degradations of SAC mechanical properties. In those investigations, mechanical testing was performed on a variety of sample geometries including lap shear specimens, Iosipescu shear specimens, and custom solder ball array shear specimens. While there are clearly aging effects in SAC solder materials, there have been limited prior mechanical loading studies on aging effects in actual solder joints extracted from area array assemblies (e.g. PBGA or flip chip). This is due to the extremely small size of the individual joints, and the difficulty in gripping them and applying controlled loadings (tension, compression, or shear). In the current work, we have explored aging phenomena in actual solder joints by nano-mechanical testing of single SAC305 lead free solder joints extracted from PBGA assemblies. Using nanoindentation techniques, the stress-strain and creep behavior of the SAC solder materials have been explored at the joint scale for various aging conditions. Mechanical properties characterized as a function of aging include the elastic modulus, hardness, and yield stress. Using a constant force at max indentation, the creep response of the aged and non-aged solder joint materials has also been measured as a function of the applied stress level. With these approaches, aging effects in solder joints were quantified and correlated to the magnitudes of those observed in testing of miniature bulk specimens. Our results show that the aging induced degradations of the mechanical properties (modulus, hardness) of single grain SAC305 joints were similar to those seen previously by testing of larger “bulk” solder specimens. However, due to the single grain nature of the joints considered in this study, the degradations of the creep responses were significantly less in the solder joints relative to those in larger uniaxial tensile specimens. The magnitude of aging effects in multi-grain lead free solder joints remains to be quantified. Due to the variety of crystal orientations realized during solidification, it was important to identify the grain structure and crystal orientations in the tested joints. Polarized light microscopy and Electron Back Scattered Diffraction (EBSD) techniques have been utilized for this purpose. The test results show that the elastic, plastic, and creep properties of the solder joints and their sensitivities to aging are highly dependent on the crystal orientation. In addition, an approach has been developed to predict tensile creep strain rates for low stress levels using nanoindentation creep data measured at very high compressive stress levels.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 335
Author(s):  
Gyuwon Jeong ◽  
Dong-Yurl Yu ◽  
Seongju Baek ◽  
Junghwan Bang ◽  
Tae-Ik Lee ◽  
...  

The effects of Ag nanoparticle (Ag NP) addition on interfacial reaction and mechanical properties of Sn–58Bi solder joints using ultra-fast laser soldering were investigated. Laser-assisted low-temperature bonding was used to solder Sn–58Bi based pastes, with different Ag NP contents, onto organic surface preservative-finished Cu pads of printed circuit boards. The solder joints after laser bonding were examined to determine the effects of Ag NPs on interfacial reactions and intermetallic compounds (IMCs) and high-temperature storage tests performed to investigate its effects on the long-term reliabilities of solder joints. Their mechanical properties were also assessed using shear tests. Although the bonding time of the laser process was shorter than that of a conventional reflow process, Cu–Sn IMCs, such as Cu6Sn5 and Cu3Sn, were well formed at the interface of the solder joint. The addition of Ag NPs also improved the mechanical properties of the solder joints by reducing brittle fracture and suppressing IMC growth. However, excessive addition of Ag NPs degraded the mechanical properties due to coarsened Ag3Sn IMCs. Thus, this research predicts that the laser bonding process can be applied to low-temperature bonding to reduce thermal damage and improve the mechanical properties of Sn–58Bi solders, whose microstructure and related mechanical properties can be improved by adding optimal amounts of Ag NPs.


2011 ◽  
Vol 70 ◽  
pp. 405-409 ◽  
Author(s):  
Emrah Demirci ◽  
Memiş Acar ◽  
Behnam Pourdeyhimi ◽  
Vadim V. Silberschmidt

Having a unique microstructure, nonwoven fabrics possess distinct mechanical properties, dissimilar to those of woven fabrics and composites. This paper aims to introduce a methodology for simulating a dynamic response of core/sheath-type thermally bonded bicomponent fibre nonwovens. The simulated nonwoven fabric is treated as an assembly of two regions with distinct mechanical properties. One region - the fibre matrix – is composed of non-uniformly oriented core/sheath fibres acting as link between bond points. Non-uniform orientation of individual fibres is introduced into the model in terms of the orientation distribution function in order to calculate the structure’s anisotropy. Another region – bond points – is treated in simulations as a deformable bicomponent composite material, composed of the sheath material as its matrix and the core material as reinforcing fibres with random orientations. Time-dependent anisotropic mechanical properties of these regions are assessed based on fibre characteristics and manufacturing parameters such as the planar density, core/sheath ratio, fibre diameter etc. Having distinct anisotropic mechanical properties for two regions, dynamic response of the fabric is modelled in the finite element software with shell elements with thicknesses identical to those of the bond points and fibre matrix.


2018 ◽  
Vol 114 (3) ◽  
pp. 513a
Author(s):  
Yuri M. Efremov ◽  
Mirian Velay-Lizancos ◽  
Daniel M. Suter ◽  
Pablo D. Zavattieri ◽  
Arvind Raman

1989 ◽  
Vol 22 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Naoki Sasaki ◽  
Norio Matsushima ◽  
Tetsu Ikawa ◽  
Hidemi Yamamura ◽  
Akeharu Fukuda

Sign in / Sign up

Export Citation Format

Share Document