Prevalence of antibiotic resistance genes in antibiotic-resistant Escherichia coli isolates in surface water of Taihu Lake Basin, China

2015 ◽  
Vol 22 (15) ◽  
pp. 11412-11421 ◽  
Author(s):  
Song He Zhang ◽  
Xiaoyang Lv ◽  
Bing Han ◽  
Xiucong Gu ◽  
Pei Fang Wang ◽  
...  
2013 ◽  
Vol 295-298 ◽  
pp. 630-634 ◽  
Author(s):  
Ni Ni Han ◽  
Song He Zhang ◽  
Pei Fang Wang ◽  
Chao Wang

The aims of this study are to evaluate multiple antibiotic resistant Escherichia coli isolated from surface water and to investigate the presence and distribution antibiotic resistance genes (ARGs) in sediments of Taihu Lake. The results show that the presentence of four ARGs concentrations in the sediments of the lake was in sequence: strB>qnrB>strA>qnrS, as determined by realtime-PCR technique. The southwest and east areas of Taihu Lake were polluted seriously than other areas from all kinds of antibiotics. The screening Escherichia coli had a higher resistance to streptomycin, tetracycline and ampicillin than other four antibiotics, and had a lowest resistance to levofloxacin.


2004 ◽  
Vol 48 (10) ◽  
pp. 3996-4001 ◽  
Author(s):  
Yolanda Sáenz ◽  
Laura Briñas ◽  
Elena Domínguez ◽  
Joaquim Ruiz ◽  
Myriam Zarazaga ◽  
...  

ABSTRACT Seventeen multiple-antibiotic-resistant nonpathogenic Escherichia coli strains of human, animal, and food origins showed a wide variety of antibiotic resistance genes, many of them carried by class 1 and class 2 integrons. Amino acid changes in MarR and mutations in marO were identified for 15 and 14 E. coli strains, respectively.


2019 ◽  
Vol 12 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Md. Abdus Sobur ◽  
Abdullah Al Momen Sabuj ◽  
Ripon Sarker ◽  
A. M. M. Taufiqur Rahman ◽  
S. M. Lutful Kabir ◽  
...  

Aim: The present study was carried out to determine load of total bacteria, Escherichia coli and Salmonella spp. in dairy farm and its environmental components. In addition, the antibiogram profile of the isolated bacteria having public health impact was also determined along with identification of virulence and resistance genes by polymerase chain reaction (PCR) under a one-health approach. Materials and Methods: A total of 240 samples of six types (cow dung - 15, milk - 10, milkers' hand wash - 10, soil - 10 water - 5, and vegetables - 10) were collected from four dairy farms. For enumeration, the samples were cultured onto plate count agar, eosin methylene blue, and xylose-lysine deoxycholate agar and the isolation and identification of the E. coli and Salmonella spp. were performed based on morphology, cultural, staining, and biochemical properties followed by PCR. The pathogenic strains of E. coli stx1, stx2, and rfbO157 were also identified through PCR. The isolates were subjected to antimicrobial susceptibility test against 12 commonly used antibiotics by disk diffusion method. Detection of antibiotic resistance genes ereA, tetA, tetB, and SHV were performed by PCR. Results: The mean total bacterial count, E. coli and Salmonella spp. count in the samples ranged from 4.54±0.05 to 8.65±0.06, 3.62±0.07 to 7.04±0.48, and 2.52±0.08 to 5.87±0.05 log colony-forming unit/g or ml, respectively. Out of 240 samples, 180 (75%) isolates of E. coli and 136 (56.67%) isolates of Salmonella spp. were recovered through cultural and molecular tests. Among the 180 E. coli isolates, 47 (26.11%) were found positive for the presence of all the three virulent genes, of which stx1 was the most prevalent (13.33%). Only three isolates were identified as enterohemorrhagic E. coli. Antibiotic sensitivity test revealed that both E. coli and Salmonella spp. were found highly resistant to azithromycin, tetracycline, erythromycin, oxytetracycline, and ertapenem and susceptible to gentamycin, ciprofloxacin, and imipenem. Among the four antibiotic resistance genes, the most observable was tetA (80.51-84.74%) in E. coli and Salmonella spp. and SHV genes were the lowest one (22.06-25%). Conclusion: Dairy farm and their environmental components carry antibiotic-resistant pathogenic E. coli and Salmonella spp. that are potential threat for human health which requires a one-health approach to combat the threat.


Author(s):  
O. C. Adekunle ◽  
A. J. Falade- Fatila ◽  
R. Ojedele ◽  
G. Odewale

The emerging drug resistance, especially among the Escherichia coli (E.coli) isolates from pregnant women, spread rapidly within the community. Urinary tract infection (UTI) is a well-known bacterial infection posing serious health problem in pregnant women. Also, multi-drug resistance is becoming rampant, and it is of serious public health concern. Treatment of E. coli is now a challenge due to continuous increase in resistance towards commonly prescribed antibiotics, thus posing a threat to treatment. Hence, the aim of the study is to determine antibiotic resistance genes in some multiple antibiotic resistant E.coli from apparently healthy pregnant women in Osun State. A cross-sectional study design was used to collect 150 mid-stream urine samples from apparently healthy pregnant women from March, 2018 to September, 2018. A well structured questionnaire and informed consent were used for data collection. Standard loop technique was used to place 0.001 ml of urine on Cysteine Lactose Electrolyte Deficient (CLED) medium, Blood agar, MacConkey agar and incubated at 37 °C for 24 h. A standard agar disc diffusion method was used to determine antimicrobial susceptibility pattern of the isolates. The molecular detection of the resistant genes was done using PCR techniques. The ages of women enrolled in this study ranges from 22 to 42 years (mean ± standard deviation = 31 ± 4.7 years). Escherichia coli showed high percentage of resistance to ampicillin and low resistance to ciprofloxacin and penicillin. All the E. coli isolates were sensitive to levofloxacin, and most were resistant to Meropenem. Multiple drug resistance was observed in all the isolates. Resistance genes in VIM 390bp, bla ctx-M 585bp and TEM 517bp were detected in some of the representative E. coli isolates profiled. This study identified the presence of Multi-drug resistance genes in E. coli associated UTI among pregnant women in Osogbo.


Author(s):  
Fabrizio Pantanella ◽  
Itziar Lekunberri ◽  
Antonella Gagliardi ◽  
Giuseppe Venuto ◽  
Alexandre Sànchez-Melsió ◽  
...  

Background: Wastewater treatment plants (WWTPs) are microbial factories aimed to reduce the amount of nutrients and pathogenic microorganisms in the treated wastewater before its discharge into the environment. We studied the impact of urban WWTP effluents on the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant Escherichia coli (AR-E. coli) in the last stretch of two rivers (Arrone and Tiber) in Central Italy that differ in size and flow volume. Methods: Water samples were collected in three seasons upstream and downstream of the WWTP, at the WWTP outlet, and at sea sites near the river mouth, and analyzed for the abundance of ARGs by qPCR and AR-E. coli using cultivation followed by disk diffusion assays. Results: For all studied genes (16S rRNA, intI1, sul1, ermB, blaTEM, tetW and qnrS), absolute concentrations were significantly higher in the Tiber than in the Arrone at all sampling sites, despite their collection date, but the prevalence of target ARGs within bacterial communities in both rivers was similar. The absolute concentrations of most ARGs were also generally higher in the WWTP effluent with median levels between log 4 and log 6 copies per ml but did not show differences along the studied stretches of rivers. Statistically significant site effect was found for E. coli phenotypic resistance to tetracycline and ciprofloxacin in the Arrone but not in the Tiber. Conclusions: In both rivers, diffuse or point pollution sources other than the studied WWTP effluents may account for the observed resistance pattern, although the Arrone appears as more sensitive to the wastewater impact considering its lower flow volume.


2019 ◽  
Vol 159 ◽  
pp. 333-347 ◽  
Author(s):  
I.C. Iakovides ◽  
I. Michael-Kordatou ◽  
N.F.F. Moreira ◽  
A.R. Ribeiro ◽  
T. Fernandes ◽  
...  

Author(s):  
Mojtaba Bonyadian ◽  
Sara Barati ◽  
Mohammad Reza Mahzounieh

Background and Objectives: Escherichia coli is a common enteric pathogen of human and livevestock. Antibiotic resis- tance is the main concern of public health. The aim of this study was to detect this bacterium in stool samples of diarrheal patients and identify the phenotypic and genotypic characterizations of antibiotic-resistant isolates such as dfrA1, sul1, citm, tetA, qnr, aac(3)-IV in Shahrekord. Materials and Methods: Two hundred fifty diarrheal stool samples from patients were collected. Microbiological and biochemical examinations were done to detect E. coli. Phenotypic and genotypic antibiotic resistance of the isolates were determined using dick diffusion method and polymerase chain reaction (PCR), respectively. Results: Among 114 E. coli isolates, the least resistance was for gentamicin (0%) and the most resistance was for trimetho- prim (79.8%). The resistance to sulfamethoxazole, ciprofloxacin, ampicillin, and tetracycline were 71.05%, 10.5%, 52.63%, and 3.5% respectively. The results of PCR assay revealed that 10 isolates contain sul1, 49 isolates harbor citm, 8 isolates tetA, 36 isolates dfrA1, 11 isolates qnr genes but there was no isolate with aac(3)-IV gene. In comparison between phenotypic and genotypic of the isolates revealed that citm, tetA, dfrA1, qnr, sul1, aac(3)-IV genes covered 42.98%, 7.01%, 31.57%, 9.64%, 8.7%, 0% of the antibiotic resistance, respectively. Conclusion: Our results revealed that all isolates harbor one or more antibiotic resistance genes and that the PCR is a fast practical and appropriate method to determine the presence of antibiotic resistance genes.


Sign in / Sign up

Export Citation Format

Share Document