scholarly journals Tolerance of Japanese knotweed s.l. to soil artificial polymetallic pollution: early metabolic responses and performance during vegetative multiplication

2017 ◽  
Vol 24 (26) ◽  
pp. 20897-20907 ◽  
Author(s):  
Serge Michalet ◽  
Soraya Rouifed ◽  
Thomas Pellassa-Simon ◽  
Manon Fusade-Boyer ◽  
Guillaume Meiffren ◽  
...  
2005 ◽  
Vol 15 (6) ◽  
pp. 625-640 ◽  
Author(s):  
N.D. Clarke ◽  
B. Drust ◽  
D.P.M. MacLaren ◽  
T. Reilly

The aim of the present study was to investigate the effect of manipulating the provision of sports drink during soccer-specific exercise on metabolism and performance. Soccer players (N = 12) performed a soccer-specific protocol on three occasions. On two, 7 mL/kg carbohydrate-electrolyte (CHOv) or placebo (PLA) solutions were ingested at 0 and 45 min. On a third, the same total volume of carbohydrate-electrolyte was consumed (CHOf) in smaller volumes at 0, 15, 30, 45, 60, and 75 min. Plasma glucose, glycerol, non-esterified free fatty acids (NEFA), cortisol, and CHO oxidation were not significantly different between CHOv and CHOf (P > 0.05). Sprint power was not significantly affected (P > 0.05) by the experimental trials. This study demonstrates when the total volume of carbohydrate consumed is equal, manipulating the timing and volume of ingestion elicits similar metabolic responses without affecting exercise performance.


2014 ◽  
Vol 163 (1-2) ◽  
pp. 132-143 ◽  
Author(s):  
Rijusmita Sarma Deka ◽  
Veena Mani ◽  
Muneendra Kumar ◽  
Shiwajirao Satish Zade ◽  
Ramesh Chand Upadhaya ◽  
...  

1993 ◽  
Vol 3 (4) ◽  
pp. 398-407 ◽  
Author(s):  
Manuel Lugo ◽  
William M. Sherman ◽  
Gregory S. Wimer ◽  
Keith Garleb

This study examined the effects of consuming the same amount of carbohydrate in solid form, liquid form, or both on metabolic responses during 2 hrs of cycling at 70% peak VO2and on cycling time-trial performance. Subjects consumed 0.4 g carbohydrate/kg body mass before and every 30 min during exercise. The liquid was a 7% carbohydrate-electrolyte beverage and the solid was a sports bar (1171 kJ) in which 76%, 18%, and 6% of total energy was derived from carbohydrate, fat, and protein, respectively. Blood obtained at baseline, before exercise, and every 30 min was analyzed for glucose, insulin, lactate, hemoglobin, hematocrit, and plasma volume. There were no differences among the treatments for the blood parameters. Total carbohydrate oxidation and time-trial performance were also similar among treatments. Under thermoneutral conditions with equal liquid inges-tion, the metabolic and performance responses are similar when consuming carbohydrate as a liquid, solid, or in combination during prolonged, moderate intensity cycling.


2016 ◽  
Vol 45 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Juan Manuel Clariget ◽  
Lorena Román ◽  
Mauricio Karlen ◽  
Andrea Álvarez-Oxiley ◽  
Carlos López-Mazz ◽  
...  

Author(s):  
H. M. Thieringer

It has repeatedly been show that with conventional electron microscopes very fine electron probes can be produced, therefore allowing various micro-techniques such as micro recording, X-ray microanalysis and convergent beam diffraction. In this paper the function and performance of an SIEMENS ELMISKOP 101 used as a scanning transmission microscope (STEM) is described. This mode of operation has some advantages over the conventional transmission microscopy (CTEM) especially for the observation of thick specimen, in spite of somewhat longer image recording times.Fig.1 shows schematically the ray path and the additional electronics of an ELMISKOP 101 working as a STEM. With a point-cathode, and using condensor I and the objective lens as a demagnifying system, an electron probe with a half-width ob about 25 Å and a typical current of 5.10-11 amp at 100 kV can be obtained in the back focal plane of the objective lens.


Author(s):  
Huang Min ◽  
P.S. Flora ◽  
C.J. Harland ◽  
J.A. Venables

A cylindrical mirror analyser (CMA) has been built with a parallel recording detection system. It is being used for angular resolved electron spectroscopy (ARES) within a SEM. The CMA has been optimised for imaging applications; the inner cylinder contains a magnetically focused and scanned, 30kV, SEM electron-optical column. The CMA has a large inner radius (50.8mm) and a large collection solid angle (Ω > 1sterad). An energy resolution (ΔE/E) of 1-2% has been achieved. The design and performance of the combination SEM/CMA instrument has been described previously and the CMA and detector system has been used for low voltage electron spectroscopy. Here we discuss the use of the CMA for ARES and present some preliminary results.The CMA has been designed for an axis-to-ring focus and uses an annular type detector. This detector consists of a channel-plate/YAG/mirror assembly which is optically coupled to either a photomultiplier for spectroscopy or a TV camera for parallel detection.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


Sign in / Sign up

Export Citation Format

Share Document