scholarly journals Responses of Soil Microbial Activity to Swine Manure Applications

2020 ◽  
Vol 12 (9) ◽  
pp. 199
Author(s):  
Maria Josiane Martins ◽  
Tânia Santos Silva ◽  
Igor Paranhos Caldas ◽  
Geovane Teixeira de Azevedo ◽  
Isabelle Carolyne Cardoso ◽  
...  

The allocation of the large amount of swine waste from farms is an international concern. An efficient way of managing such waste is its use in farming. It is already known that the incorporation of organic waste into the soil significantly increases the microbial population. Therefore, the objective was to evaluate the impact of the use of swine manure on the soil microbiota in a Eutrophic Oxisol. The experiment was set up in a completely randomized design in a 6 × 4 factorial scheme (sixconcentrations of swine manure and four evaluation periods) with four replications. We evaluate the following characteristics: microbial respiration (C-CO2), microbial biomass (µC g-1 soil) and pH.: microbial respiration (C-CO2), microbial biomass (µC g-1 soil) and pH. A significant effect was found in the interaction between concentrations and time of incubation (p < 0.05) of swine manure on microbial activity in the soil. The amount of microbial carbon increased as a function of increased levels of liquid swine manure. No interaction was observed between concentrations and time of incubation for the pH. The evaluation of the isolated factors allowed to observe that the pH decreased as the doses of manure were incremented. Higher and lower pH values were found after 5 and 30 days of incubation. The application of liquid swine manure up to 6000 L ha-1 increases the release of CO2 and carbon in the microbial biomass. The applications of liquid swine manure cause a gradual reduction in soil pH.

2019 ◽  
Vol 40 (4) ◽  
pp. 1405
Author(s):  
José Ilmar Tínel de Carvalho Junior ◽  
Maria Isidória Silva Gonzaga ◽  
André Quintão de Almeida ◽  
Jady Araújo ◽  
Lúcia Catherinne Oliveira Santos

Biochar has shown much potential to be used as soil amendment and conditioner as well as an effective alternative to waste disposal. However, the effect of biochar on soil organic matter varies according to the type of feedstock. This study aimed to evaluate the influence of different types and rates of application of biochar on soil microbial activity and on soil carbon priming effect. The incubation experiment was set up as a completely randomized design in a 2 x 5 factorial scheme, with two types of biochar (coconut husk and orange bagasse) and five rates of application (0, 5, 10, 15 and 30 t ha-1), with three replications. Soil microbial activity was evaluated through the concentration of CO2 released from the soil during a period of 130 days. Carbon priming effect was determined based on the CO2 respired in the biochar treated soil and in the control soil. Both biochars increased the total oxidizable carbon in the soil when they were applied at 30 t ha-1, however, the orange bagasse biochar was more effective than the coconut biochar. Coconut biochar increased the cumulative soil microbial respiration at all rates of application during the incubation period, therefore, it contributed to a positive carbon priming effect and should be applied with caution to avoid excessive loss of carbon from the soil. Orange bagasse biochar had little influence on the cumulative CO2 emission, except at 15 t ha-1, which increased soil microbial activity.


2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S74-S80 ◽  
Author(s):  
E. Gömöryová ◽  
K. Střelcová ◽  
J. Škvarenina ◽  
J. Bebej ◽  
D. Gömöry

: In November 2004, forest stands in the Tatra National Park (TANAP) were affected by windthrow and in July 2005, the wildfire broke out on a part of the affected area. The objective of this study is to evaluate the impact of the windthrow and fire disturbances on soil microbial activity. Basal and potential soil respiration, N-mineralisation, catalase activity, soil microbial biomass, and cellulase activity were measured in soil samples taken from the A-horizon (depth of 0–10 cm) along 100 m transects established on 4 plots (reference site, burnt, non-extracted, and extracted sites) in October 2006. Some soil microbial characteristics exhibited a high spatial variability, especially microbial biomass and N-mineralisation. Significant differences in soil microbial characteristics (especially basal soil respiration and catalase activity) between plots were found. Generally, the highest microbial activity was revealed on the plot affected by fire. Soil microbial activity was similar on the extracted and non-extracted sites.


2019 ◽  
Vol 45 (4) ◽  
pp. 393-398
Author(s):  
Ivã Tavares Butrinowski ◽  
Rosangela Dallemole-Giaretta ◽  
Idalmir dos Santos ◽  
Betania Brum De Bortoli ◽  
Paula Steilmann ◽  
...  

ABSTRACT The aim of this study was to evaluate the effect of swine manure (SM) doses applied to soils showing pH of 4.8 and 7.2 on the control of damping-off in beetroot seedlings caused by Rhizoctonia solani. To set the trial, plastic bags were filled with 4 kg soil (pH levels of 4.8 and 7.2) and 15 g R. solani inoculum kg soil-1. This mixture was moistened, homogenized and kept in a greenhouse for seven days. Following this period, SM doses (0, 5, 10, 15 and 20%) were incorporated into the bags, which were again stored in a greenhouse. After seven days, part of the soil from each plastic bag was separately placed into 16 cells of a 128-cell polystyrene tray, and two beetroot seeds were sown per cell. Seedling emergence and damping-off were evaluated for 21 consecutive days. The other part of the soil was used for microbial activity quantification based on the CO2 release method at 7, 14 and 21 days. The trial was conducted in a completely randomized design, with four replicates per treatment, and repeated twice. All tested SM doses reduced the number of damped-off beetroot seedlings in both trials, and the greatest disease control was provided by treatments that had SM doses of 15% and 20% applied to soil showing pH level of 7.2. In addition, regardless of the pH level, all tested SM doses increased soil microbial activity.


Author(s):  
Beata Klimek ◽  
Hanna Poliwka-Modliborek ◽  
Irena M. Grześ

AbstractInteractions between soil fauna and soil microorganisms are not fully recognized, especially in extreme environments, such as long-term metal-polluted soils. The purpose of the study was to assess how the presence of Lasius niger ants affected soil microbial characteristics in a long-term metal-polluted area (Upper Silesia in Poland). Paired soil samples were taken from bulk soil and from ant nests and analysed for a range of soil physicochemical properties, including metal content (zinc, cadmium, and lead). Microbial analysis included soil microbial activity (soil respiration rate), microbial biomass (substrate-induced respiration rate), and bacteria catabolic properties (Biolog® ECO plates). Soil collected from ant nests was drier and was characterized by a lower content of organic matter, carbon and nitrogen contents, and also lower metal content than bulk soil. Soil microbial respiration rate was positively related to soil pH (p = 0.01) and negatively to water-soluble metal content, integrated into TIws index (p = 0.01). Soil microbial biomass was negatively related to TIws index (p = 0.04). Neither soil microbial activity and biomass nor bacteria catabolic activity and diversity indices differed between bulk soil and ant nests. Taken together, ant activity reduced soil contamination by metals in a microscale which support microbial community activity and biomass but did not affect Biolog® culturable bacteria.


1995 ◽  
Vol 187 (2) ◽  
pp. 333-342 ◽  
Author(s):  
Shivcharn S. Dhillion ◽  
Jacques Roy ◽  
Mary Abrams

Author(s):  
Alexandre Franco Castilho ◽  
Rafael Gomes Viana ◽  
Renata Thaysa da Silva Santos ◽  
Yanna Karoline Santos da Costa ◽  
Mailson Freire Oliveira ◽  
...  

Author(s):  
Jelena Marinkovic ◽  
Ivan Susnica ◽  
Dragana Bjelic ◽  
Branislava Tintor ◽  
Mirjana Vasic

The objective of this study was to compare the effects of conventional and organic production system on microbial activity in the soil cultivated with bean and maize crops. The trial in Djurdjevo was set up according to the conventional farming system, while organic farming system was used in Futog. Two maize hybrids and two bean cultivars were used in the trial. Soil samples were collected in two periods during 2014 (before sowing, at flowering stage of bean crops, and at 9-11 leaf stage of maize) at two depths, at both locations. The following microbiological parameters were tested: the total number of micro?organisms, number of ammonifiers, Azotobacter sp., free nitrogen fixing bacteria, fungi, actinomycetes, and activity of dehydrogenase enzyme. The results showed that the total number of microorganisms, number of free N-fixers and dehydrogenase activity were higher within organic production, while Azotobacter sp. was more abundant in conventional production. Variations in the number of ammonifiers, fungi and actinomycetes in relation to the type of production were not obtained. Significant differences in microbial activity were also obtained between period and depths of sampling.


2015 ◽  
Vol 46 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Diana Morales ◽  
Mónica Machado Vargas ◽  
Michele Pottes de Oliveira ◽  
Bruna Lunarde Taffe ◽  
Jucinei Comin ◽  
...  

ABSTRACT: Manure fertilization is a common practice, but little is known about its impacts on soil microbial activity and organic matter. Aiming to evaluate soil microbial response to nine years of successive applications of swine manure, organic carbon (TOC), total nitrogen (TN), pH, microbial biomass carbon (MBC), basal respiration (BR), metabolic quotient (qCO2), and enzyme (ß-glucosidase, phosphatase, arylsulphatase, and FDA) activities were measured in the 0-10cm soil layer, in a no-tillage system. Treatments were: control soil without fertilization (C), and application of two doses (104 and 209kg of N ha-1year-1) of urea (U1 and U2), pig slurry (PS1 and PS2) and deep litter (DL1 and DL2). TOC, TN, soil pH, MBC, and BR increased in soil fertilized with DL, and were lower in U treatments. Soils with U and DL application had higher qCO2, related to different sources of stressors like nutrient imbalance. Phosphatase and ß-glucosidase activities were not affected by treatments, increased with time, and had a strong correlation with MBC. We conclude that long-term swine manure applications increase microbial activity and soil organic matter, mainly in DL form; while urea applications have negative impacts on these indicators.


2019 ◽  
Vol 9 (19) ◽  
pp. 3963
Author(s):  
Xiuxiu Feng ◽  
Lu Zhang ◽  
Fazhu Zhao ◽  
Hongying Bai ◽  
Russell Doughty

Microbial biomass, extracellular enzyme activity, and their stoichiometry in soil play an important role in ecosystem dynamics and functioning. To better understand the improvement of sand soil quality and the limitation of soil nutrients after adding feldspathic sandstone, we investigated changes in soil microbial activity after 10 months of mixing feldspathic sandstone and sand, and compared the dynamics with soil properties. We used fumigation extraction to determine soil microbial biomass carbon (MBC), nitrogen (MBN), phosphorus (MBP), and microplate fluorometric techniques to measure soil β-1,4-glucosidase (BG), β-1,4-xylosidase (BX), β-D-cellobiohydrolase (CBH), N-acetyl-β-glucosaminidase (NAG), and Alkaline phosphatase (AKP). We also measured soil organic carbon (SOC), pH, electrical conductivity (EC), soil inorganic carbon (SIC), and soil water content (SWC). Our results showed that the soil microbial biomass C, N, P, and individual extracellular enzyme activities significantly increased in mixed soil. Similarly, the soil microbial biomass C:N, C:P, N:P, MBC:SOC, and BG:NAG significantly increased by 54.3%, 106.3%, 33.1%, 23.0%, and 65.4%, respectively. However, BG:AKP and NAG:AKP decreased by 19.0% and 50.3%, respectively. Additionally, redundancy analysis (RDA) and Pearson’s correlation analysis showed that SWC, SOC, porosity and field capacity were significantly associated with soil microbial biomass indices (i.e., C, N, P, C:N, C:P, N:P in microbial biomass, and MBC:SOC) and extracellular enzyme activity metrics (i.e., individual enzyme activity, ecoenzymatic stoichiometry, and vector characteristics of enzyme activity), while pH, EC, and SIC had no correlation with these indices and metrics. These results indicated that mixing feldspathic sandstone and sand is highly susceptible to changes in soil microbial activity, and the soil N limitation decreased while P became more limited. In summary, our research showed that adding feldspathic sandstone into sand can significantly improve soil quality and provide a theoretical basis for the development of desertified land resources.


2012 ◽  
Vol 36 (5) ◽  
pp. 1629-1636 ◽  
Author(s):  
Cácio Luiz Boechat ◽  
Jorge Antonio Gonzaga Santos ◽  
Adriana Maria de Aguiar Accioly ◽  
Marcela Rebouças Bomfim ◽  
Adailton Conceição dos Santos

Microbial processes have been used as indicators of soil quality, due to the high sensitivity to small changes in management to evaluate, e.g., the impact of applying organic residues to the soil. In an experiment in a completely randomized factorial design 6 x 13 + 4, (pot without soil and residue or absolute control) the effect of following organic wastes was evaluated: pulp mill sludge, petrochemical complex sludge, municipal sewage sludge, dairy factory sewage sludge, waste from pulp industry and control (soil without organic waste) after 2, 4, 6, 12, 14, 20, 28, 36, 44, 60, 74, 86, and 98 days of incubation on some soil microbial properties, with four replications. The soil microbial activity was highly sensitive to the carbon/nitrogen ratio of the organic wastes. The amount of mineralized carbon was proportional to the quantity of soil-applied carbon. The average carbon dioxide emanating from the soil with pulp mill sludge, corresponding to soil basal respiration, was 0.141 mg C-CO2 100 g-1 soil h-1. This value is 6.4 times higher than in the control, resulting in a significant increase in the metabolic quotient from 0.005 in the control to 0.025 mg C-CO2 g-1 Cmic h-1 in the soil with pulp mill sludge. The metabolic quotient in the other treatments did not differ from the control (p < 0.01), demonstrating that these organic wastes cause no disturbance in the microbial community.


Sign in / Sign up

Export Citation Format

Share Document