scholarly journals Exercise-training-induced changes in metabolic capacity with age: the role of central cardiovascular plasticity

AGE ◽  
2013 ◽  
Vol 36 (2) ◽  
pp. 665-676 ◽  
Author(s):  
Eivind Wang ◽  
Morten Svendsen Næss ◽  
Jan Hoff ◽  
Tobias Lie Albert ◽  
Quan Pham ◽  
...  
2020 ◽  
Vol 29 (3) ◽  
pp. 208-213
Author(s):  
Kangil Lim ◽  
Kijeong Kim

PURPOSE: The physiological role of adipocytokines on obesity, diabetes, and insulin resistance is not clearly understood yet. Furthermore, the mechanism of exercise-induced changes in plasma adiponectin in obesity and diabetes is not known well. The aim of this review is to describe the role of exercise on the adiponectin production in adipose tissue of the obesity and diabetes.METHODS: This study reviews 46 previous studies focusing on the effect of exercise on adiponectin in obese and diabetic individuals.RESULTS: Increasing adiponectin levels after long-term exercise training in obese and diabetic individuals have inconsistent support in the scientific literature. However, the present review summarized evidence that supports for exercise training as a viable strategy to increase adiponectin in obese and diabetic individuals.CONCLUSIONS: Despite the importance of regular physical activity for the prevention of obesity and diabetes outlined in numerous guidelines and recommendations, previous studies showed inconsistent results regarding the effect of physical activity among obese and diabetic individuals. This review suggested that exercise training induces the augmentation of the anti-inflammatory cytokine adiponectin and in turn, it provides long-term health outcomes for obese and diabetic individuals.


Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


Diabetologia ◽  
2021 ◽  
Author(s):  
Trine Moholdt ◽  
Evelyn B. Parr ◽  
Brooke L. Devlin ◽  
Julia Debik ◽  
Guro Giskeødegård ◽  
...  

Abstract Aims/hypothesis We determined whether the time of day of exercise training (morning vs evening) would modulate the effects of consumption of a high-fat diet (HFD) on glycaemic control, whole-body health markers and serum metabolomics. Methods In this three-armed parallel-group randomised trial undertaken at a university in Melbourne, Australia, overweight/obese men consumed an HFD (65% of energy from fat) for 11 consecutive days. Participants were recruited via social media and community advertisements. Eligibility criteria for participation were male sex, age 30–45 years, BMI 27.0–35.0 kg/m2 and sedentary lifestyle. The main exclusion criteria were known CVD or type 2 diabetes, taking prescription medications, and shift-work. After 5 days, participants were allocated using a computer random generator to either exercise in the morning (06:30 hours), exercise in the evening (18:30 hours) or no exercise for the subsequent 5 days. Participants and researchers were not blinded to group assignment. Changes in serum metabolites, circulating lipids, cardiorespiratory fitness, BP, and glycaemic control (from continuous glucose monitoring) were compared between groups. Results Twenty-five participants were randomised (morning exercise n = 9; evening exercise n = 8; no exercise n = 8) and 24 participants completed the study and were included in analyses (n = 8 per group). Five days of HFD induced marked perturbations in serum metabolites related to lipid and amino acid metabolism. Exercise training had a smaller impact than the HFD on changes in circulating metabolites, and only exercise undertaken in the evening was able to partly reverse some of the HFD-induced changes in metabolomic profiles. Twenty-four-hour glucose concentrations were lower after 5 days of HFD compared with the participants’ habitual diet (5.3 ± 0.4 vs 5.6 ± 0.4 mmol/l, p = 0.001). There were no significant changes in 24 h glucose concentrations for either exercise group but lower nocturnal glucose levels were observed in participants who trained in the evening, compared with when they consumed the HFD alone (4.9 ± 0.4 vs 5.3 ± 0.3 mmol/l, p = 0.04). Compared with the no-exercise group, peak oxygen uptake improved after both morning (estimated effect 1.3 ml min−1 kg−1 [95% CI 0.5, 2.0], p = 0.003) and evening exercise (estimated effect 1.4 ml min−1 kg−1 [95% CI 0.6, 2.2], p = 0.001). Fasting blood glucose, insulin, cholesterol, triacylglycerol and LDL-cholesterol concentrations decreased only in participants allocated to evening exercise training. There were no unintended or adverse effects. Conclusions/interpretation A short-term HFD in overweight/obese men induced substantial alterations in lipid- and amino acid-related serum metabolites. Improvements in cardiorespiratory fitness were similar regardless of the time of day of exercise training. However, improvements in glycaemic control and partial reversal of HFD-induced changes in metabolic profiles were only observed when participants exercise trained in the evening. Trial registration anzctr.org.au registration no. ACTRN12617000304336. Funding This study was funded by the Novo Nordisk Foundation (NNF14OC0011493). Graphical abstract


2021 ◽  
Vol 98 ◽  
pp. 107832
Author(s):  
Hirva K. Bhatt ◽  
Dana Song ◽  
Gyen Musgrave ◽  
P.S.S. Rao

2021 ◽  
Vol 22 (14) ◽  
pp. 7713
Author(s):  
Alyssa Tidmore ◽  
Sucharita M. Dutta ◽  
Arriyam S. Fesshaye ◽  
William K. Russell ◽  
Vania D. Duncan ◽  
...  

Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.


Languages ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 114
Author(s):  
Ulrich Reubold ◽  
Sanne Ditewig ◽  
Robert Mayr ◽  
Ineke Mennen

The present study sought to examine the effect of dual language activation on L1 speech in late English–Austrian German sequential bilinguals, and to identify relevant predictor variables. To this end, we compared the English speech patterns of adult migrants to Austria in a code-switched and monolingual condition alongside those of monolingual native speakers in England in a monolingual condition. In the code-switched materials, German words containing target segments known to trigger cross-linguistic interaction in the two languages (i.e., [v–w], [ʃt(ʁ)-st(ɹ)] and [l-ɫ]) were inserted into an English frame; monolingual materials comprised English words with the same segments. To examine whether the position of the German item affects L1 speech, the segments occurred either before the switch (“He wants a Wienerschnitzel”) or after (“I like Würstel with mustard”). Critical acoustic measures of these segments revealed no differences between the groups in the monolingual condition, but significant L2-induced shifts in the bilinguals’ L1 speech production in the code-switched condition for some sounds. These were found to occur both before and after a code-switch, and exhibited a fair amount of individual variation. Only the amount of L2 use was found to be a significant predictor variable for shift size in code-switched compared with monolingual utterances, and only for [w]. These results have important implications for the role of dual activation in the speech of late sequential bilinguals.


2001 ◽  
Vol 280 (5) ◽  
pp. L923-L929 ◽  
Author(s):  
James J. Cummings ◽  
Huamei Wang

We studied the role of cGMP in nitric oxide (NO)-induced changes in lung liquid production ( J v ) in chronically instrumented fetal sheep. Forty-five studies were done in which J v was measured by a tracer dilution technique. Left pulmonary arterial flow (Qlpa) was measured by a Doppler flow probe. There were two series of experiments. In the first, we gave 8-bromo-cGMP, a cGMP analog, by either the pulmonary vascular or intraluminal route; in the second, we used agents to inhibit or enhance endogenous cGMP activity. When infused directly into the pulmonary circulation, 8-bromo-cGMP significantly increased Qlpa but had no effect on J v. Conversely, when instilled into the lung liquid, 8-bromo-cGMP had no effect on Qlpa but significantly reduced J v. Inhibition of guanylate cyclase activity with methylene blue totally blocked, whereas phosphodiesterase inhibition with Zaprinast significantly enhanced, the effect of instilled NO on J v. Thus the reduction in lung liquid caused by NO appears to be mediated by cGMP, perhaps through a direct effect on the pulmonary epithelium.


2009 ◽  
Vol 20 (5) ◽  
pp. 1454-1463 ◽  
Author(s):  
Sonia L. Planey ◽  
Susan K. Keay ◽  
Chen-Ou Zhang ◽  
David A. Zacharias

Previously, we identified cytoskeleton-associated protein 4 (CKAP4) as a major substrate of the palmitoyl acyltransferase, DHHC2, using a novel proteomic method called palmitoyl-cysteine identification, capture and analysis (PICA). CKAP4 is a reversibly palmitoylated and phosphorylated protein that links the ER to the cytoskeleton. It is also a high-affinity receptor for antiproliferative factor (APF), a small sialoglycopeptide secreted from bladder epithelial cells of patients with interstitial cystitis (IC). The role of DHHC2-mediated palmitoylation of CKAP4 in the antiproliferative response of HeLa and normal bladder epithelial cells to APF was investigated. Our data show that siRNA-mediated knockdown of DHHC2 and consequent suppression of CKAP4 palmitoylation inhibited the ability of APF to regulate cellular proliferation and blocked APF-induced changes in the expression of E-cadherin, vimentin, and ZO-1 (genes known to play a role in cellular proliferation and tumorigenesis). Immunocytochemistry revealed that CKAP4 palmitoylation by DHHC2 is required for its trafficking from the ER to the plasma membrane and for its nuclear localization. These data suggest an important role for DHHC2-mediated palmitoylation of CKAP4 in IC and in opposing cancer-related cellular behaviors and support the idea that DHHC2 is a tumor suppressor.


Sign in / Sign up

Export Citation Format

Share Document