Evaluation of Technosols constructed with construction and excavation debris for greenhouse production of ornamental plants

Author(s):  
T. F. Abbruzzini ◽  
L. Mora ◽  
B. Prado
HortScience ◽  
2020 ◽  
Vol 55 (11) ◽  
pp. 1772-1780
Author(s):  
Hardeep Singh ◽  
Megha R. Poudel ◽  
Bruce Dunn ◽  
Charles Fontanier ◽  
Gopal Kakani

Increase in ambient carbon dioxide (CO2) concentration is beneficial for plant growth due to increased photosynthesis and water use efficiency. A greenhouse study was conducted to investigate how supplemented CO2 influences optimal irrigation and fertilization management for production of two ornamental plants. Two identical greenhouses were used, with one having CO2 supplementation and the other serving as the control with ambient CO2 concentration. Tensiometer-based irrigation treatments were applied at soil tensions of –5, –10, and –15 kPa with 0-, 3-, 6-, or 9-g controlled-release fertilizer rates applied in factorial with irrigation treatments. Plugs of geranium ‘Pinto Premium Rose Bicolor’ and fountain grass were grown under experimental conditions for 12 and 16 weeks, respectively. The results showed that CO2 supplementation increased the dry weight of geranium ‘Pinto Premium Rose Bicolor’ and fountain grass by 35% and 39%, respectively. Under the two driest irrigation regimes (–10 and –15 kPa), photosynthesis of geranium ‘Pinto Premium Rose Bicolor’ increased with CO2 supplementation compared with the ambient condition. Similarly, for fountain grass, the moderately watered (–10 kPa) treatment had a greater rate of photosynthesis with greater fertilizer rates of 6 or 9 g. CO2 supplementation resulted in increased water use efficiency of both species, whereas rate of transpiration was lower only in fountain grass. Among different fertilizer rates, 6- or 9-g fertilizer rates had greater values for dry weight, number of flowers, and stomatal conductance in both species. Therefore, it can be concluded that CO2 supplementation can help in efficient use of water for greenhouse production of ornamental plants.


2009 ◽  
Vol 19 (4) ◽  
pp. 743-747 ◽  
Author(s):  
Stephanie E. Burnett ◽  
Lois Berg Stack

Organic and conventional greenhouse growers in Maine were surveyed to determine the research needs of growers who may produce organic ornamental bedding plants. Organic growers were also asked to identify their greatest motivator to determine whether they feel that there is a greater market for organically grown ornamental plants. The greatest percentage (75%) of organic growers indicated that they choose to grow plants organically because “it's the right thing to do.” The second greatest percentage (36%) of organic growers choose organic production techniques for ornamental plants because they grow food crops organically and consider it convenient to use only one production technique. A relatively small number of organic growers (7%) considered the market for organic ornamental plants to be a strong motivator for growing organically. Organic growers were asked to select production issues that pose the greatest challenge for them from a list of common production problems. They considered insect and disease management and organic fertility, substrate, and pH management to be their greatest problems. Conventional growers primarily avoid organic production techniques because they consider organic fertilization or organic insect management to be too big of a challenge. Because organic and conventional growers consider insect and fertility or substrate management to be challenges facing organic growers, these topics should be top priorities for future research on organic greenhouse production.


HortScience ◽  
2018 ◽  
Vol 53 (7) ◽  
pp. 1006-1011
Author(s):  
Yanjun Guo ◽  
Terri Starman ◽  
Charles Hall

Retail environments are rarely optimal for ornamental plants, and wilting caused by water stress is a major cause of postproduction shrinkage. The objective of this study was to determine the effect of two levels of substrate moisture content (SMC) applied during greenhouse production on angelonia (Angelonia angustifolia) ‘Angelface Blue’ and heliotrope (Heliotropium arborescens) ‘Simply Scentsational’ growth and physiological parameters and subsequent postproduction quality during simulated retail conditions. At the end of production, angelonia total plant shoot dry weight (DW) was reduced with 20% SMC compared with 40% SMC, and plants grown with 20% SMC had higher shoot coloring percentage, reduced internode length, and required less irrigation labor–related costs compared with 40% SMC. Heliotrope grown at 20% SMC produced the same size plant as 40% SMC, but had a higher shoot coloring percentage at the end of production and postproduction, indicating lower SMC resulted in higher visual quality compared with 40% SMC. For both species, 20% SMC increased plant visual quality compared with 40% SMC and reduced irrigation water input throughout production, resulting in reduced production costs and increased floral crop economic value.


2000 ◽  
Vol 6 (2) ◽  
Author(s):  
G. Schmidt ◽  
G. Kardos ◽  
M. Szántó

The production of ornamental plants represents an important branch of our horticulture. The growing area is relatively small (round 2800 ha), the production value, however, a rather large. Notwithstanding, its financial balance is inactive because the demand surpasses the supply copiously. The most popular plants are as follows: carnation, gerbera, rose, bulbous flowers, chrysanthemum, other cutflowers, cutgreens and Gypsophyla — their total production value makes up to Ft 8-9 billion. The area of ornamental nurseries — about 800-900 ha — is to be found mostly on the western part of our country. Our accession to the EU will have undoubtedly an impact on our ornamental plant production. We must take into account, that in greenhouse production the specialization extends all over the world, field production over a limited region. Our chances will not deteriorate by joining the EU. The buyer — chiefly because of ecological purposes — will prefer the domestic product to the foreign one. By the way, our products will be competitive, as far as quality or price is concerned, with those of western Europe. Last but not least, we may hope a greater saleability of home-bred, special varieties and cultivars, the so-called "hungaricums", both in the domestic as well as export markets. It is anticipated that we will have a good turnover with potted ornamental plants and flower seedlings. Our nursery products will become marketable too. To exploit the opportunity, of course, the necessary conditions are to be created. First of all, we need development in research, with special regard to breeding, at the same time in education, in extension service, in the training of experts, on a high level. Some tasks can be solved, no doubt by improvement of the organisation within the branch. At the same time the state subsidy is indispensable in order to promote both the technical and the research activities. State subsidy is also necessary to build up more advantageous conditions of sales like in some foreign countries (e.g. the Netherlands).


2017 ◽  
Vol 8 (5) ◽  
pp. 221
Author(s):  
Sugiono Sugiono ◽  
Suluh E. Swara ◽  
Wisnu Wijanarko ◽  
Dwi H. Sulistyarini

2019 ◽  
Vol 18 (2) ◽  
pp. 127
Author(s):  
Purnama Hidayat ◽  
Denny Bintoro ◽  
Lia Nurulalia ◽  
Muhammad Basri

Species identification, host range, and identification key of whiteflies of Bogor and surrounding area. Whitefly (Hemiptera: Aleyrodidae) is a group of insects that are small, white, soft-bodied, and easily found on various agricultural crops. Whitefly is a phytophagous insect; some species are important pests in agricultural crops that can cause direct damage and can become vectors of viral diseases. The last few years the damage caused by whitefly in Indonesia has increased. Unfortunately, information about their species and host plants in Indonesia, including in Bogor, is still limited. Kalshoven, in his book entitled Pest of Crops in Indonesia, published in the 1980s reported that there were 9 species of whitefly in Indonesia. The information on the book should be reconfirmed. Therefore, this study was conducted to determine whitefly species and its host plants in Bogor and its surroundings. Whiteflies is identified based on the ‘puparia’ (the last instar of the nymph) collected from various agricultural plants, ornamental plants, weeds, and forest plants. A total of 35 species of whiteflies were collected from 74 species and 29 families of plants. The collwcted whiteflies consist of four species belong to Subfamily Aleurodicinae and 31 species of Subfamily Aleyrodinae. The most often found whitefly species were Aleurodicus dispersus, A. dugesii, and Bemisia tabaci. A dichotomous identification key of whiteflies was completed based on morphological character of 35 collected species. The number of whitefly species in Bogor and surrounding areas were far exceeded the number of species reported previously by Kalshoven from all regions in Indonesia.


2002 ◽  
Vol 20 (3) ◽  
pp. 138-142
Author(s):  
William E. Klingeman

Abstract The bagworm (Thyridopteryx ephemeraeformis (Haworth)) is a polyphagous, native pest of numerous deciduous and evergreen ornamental plants. Bagworm larvae were used to investigate host plant susceptibility among ten species and cultivars of maples that are economically important and commonly encountered in landscapes in the eastern United States. Data analyses from 48-hour choice assays, conducted in the laboratory during 2000 and 2001, indicated that differences existed among maples for bagworm feeding preferences and host plant susceptibility. Results from the 48-hour trials were not as accurate as seasonal no-choice assays, however. No-choice assays during both seasons quantified resistance among maples that limited larval bagworm survival and development. Measurements of larval feeding injury demonstrated resistance in paperbark maple (Acer griseum (Franch.) Pax) and trident maple (A. buergerianum Miq.) when compared with other maples. Laboratory results were corroborated during 2001 by a no-choice field assay, in which early instar bagworm larvae performed well on the majority of maples. In contrast, paperbark maple and trident maple were resistant to bagworm feeding, while ‘Autumn Blaze’ Freeman maple (A. x freemanii E. Murray), a hybrid cross obtained by breeding A. rubrum with A. saccharinum, showed moderate resistance.


1999 ◽  
Vol 17 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Robert H. Stamps ◽  
Michael R. Evans

Abstract A comparison was made of Canadian sphagnum peat (SP) and Philippine coconut (Cocos nucifera L.) coir dust (CD) as growing media components for greenhouse production of Dracaena marginata Bak. and Spathiphyllum Schott ‘Petite’. Three soilless foliage plant growing mixes (Cornell, Hybrid, University of Florida #2 [UF-2]) were prepared using either SP or CD and pine bark (PB), vermiculite (V), and/or perlite (P) in the following ratios (% by vol): Cornell = 50 CD or SP:25 V:25 P, Hybrid = 40 CD or SP:30 V:30 PB, UF-2 = 50 CD or SP: 50 PB. Dracaena root growth was not affected by treatments but there were significant mix × media component interactions that affected plant top growth parameters. In general, the growth and quality of D. marginata were reduced by using CD in Cornell, had no effect in Hybrid, and increased in UF-2. S. ‘Petite’ grew equally well in all growing mixes regardless of whether CD or SP was used; however, plants grew more in Cornell and Hybrid than in UF-2. S. ‘Petite’ roots, which were infested with Cylindrocladium spathiphylli, had higher grades when grown in CD than when the media contained SP.


Author(s):  
Mădălina Stănescu ◽  
Constantin Buta ◽  
Geanina Mihai ◽  
Lucica Roșu

Abstract In order to increase the competitiveness of an agricultural holding through the efficient use of the production factors, the modernization of an agricultural farm was carried out by exending the existing greenhouse with at least 700m2 for the intensive cultivation of ornamental plants - Thuja Orientalis. The material is produced by initiating crops in pots, with seedlings grown in pots or transplanting them in pots right after the first year of the multiplication and growing them in containers, appropriate to their size, until reaching their full value. From a technical point of view, reaching the objective will also be possible through a localized irrigation system.


Sign in / Sign up

Export Citation Format

Share Document