Instability and liquefaction flow slide of granular soils: the role of initial shear stress

2021 ◽  
Author(s):  
J. Yang ◽  
L. B. Liang ◽  
Y. Chen
2013 ◽  
Vol 554-557 ◽  
pp. 1738-1750 ◽  
Author(s):  
Hua Gui Zhang ◽  
Khalid Lamnawar ◽  
Abderrahim Maazouz

This work aims to highlight the importance of interphase triggered from interdiffusion at neighboring layers on controlling the interfacial flow instability of multilayer coextrusion based on a compatible bilayer system consist of poly(methyl methacrylate) (PMMA) and poly(vinylidene fluoride) (PVDF) melt streams. A fundamental rheological measurement on the bilayer structures provides a good strategy to probe the mutual diffusion process occurred at neighboring layers and to quantify the rheology and thickness of the interphase generated thereof. By implementing steady shear measurements on the multilayer’s, subtle interfacial slippage can be observed at a condition of short welding time and rather high shear rate due to the disentanglement of chains at the interphase. Pre-shear at an early stage on the multilayer was found to greatly promote the homogenizing process by inducing branched structures and hence increasing interfacial area. In coextrusion, some key classical decisive parameters concerning the interfacial instability phenomena such as viscosity ratio, thickness ratio and elasticity ratio, etc. were highlighted. These key factors that are significant in controlling the interfacial stability of coextrusion in an incompatible system seem not that important in a compatible system. In comparison to the severe flow instability observed in the coextrusion of PMMA/PE incompatible bilayer, the coextrusion of PMMA/PVDF compatible bilayer appears to be smooth without apparent interfacial flow instability due to the presence of the interphase. Interdiffusion can reduce (even eliminate) the interfacial flow instability of coextrusion despite of the very high viscosity ratio of PVDF versus PMMA at low temperatures. Indeed, in the coextrusion process, on one hand, the interdiffusion should be studied by taking into account of the effect of polymer chain orientation which was demonstrated to decelerate the diffusion coefficient. On the other hand, the interfacial shear stress was able to promote mixing and homogenizing process at the interface, which favours the development of the interphase and guarantees the stable interfacial flow. The degree of the interphase is related to a lot of parameters like contact time, processing temperature, interfacial shear stress and compatibility of the polymers, etc. Therefore, apart from the classical mechanical parameters, the interphase created from the interdiffusion should be taken into consideration as an important factor on determining the interfacial instability phenomena. References [1] H. Zhang, K. Lamnawar, A. Maazouz, Rheological modeling of the diffusion process and the interphase of symmetrical bilayers based on PVDF and PMMA with varying molecular weights. Rheol. Acta 51 (2012) 691-711 [2] H. Zhang, K. Lamnawar, A. Maazouz, Rheological modeling of the mutual diffusion and the interphase development for an asymmetrical bilayer based on PMMA and PVDF model compatible polymers, Macromolecules (2012), Doi: http://dx.doi.org/10.1021/ma301620a [3] H. Zhang, K. Lamnawar, A. Maazouz, Role of the interphase in the interfacial flow stability of multilayer coextrusion based on PMMA and PVDF compatible polymers, to be submitted. [4] K. Lamnawar, A. Maazouz, Role of the interphase in the flow stability of reactive coextruded multilayer polymers, Polymer Engineering & Science, 49, (2009), 727 - 739 [5] K. Lamnawar, H. Zhang, A. Maazouz, one chapter” State of the art in co-extrusion of multilayer polymers: experimental and fundamental approaches” in Encyclopedia of Polymer Science and Technology (wiley library) (feature article)


2007 ◽  
Vol 49 (25) ◽  
pp. 2379-2393 ◽  
Author(s):  
Yiannis S. Chatzizisis ◽  
Ahmet Umit Coskun ◽  
Michael Jonas ◽  
Elazer R. Edelman ◽  
Charles L. Feldman ◽  
...  

2015 ◽  
Vol 7 (2) ◽  
pp. 142
Author(s):  
Julie Favre ◽  
Emilie Vessière ◽  
Anne-Laure Guihot ◽  
Linda Grimaud ◽  
Jean-François Arnal ◽  
...  

1999 ◽  
Vol 197 (1) ◽  
pp. 7-10 ◽  
Author(s):  
F. I. M. Thomas ◽  
K. A. Edwards ◽  
T. F. Bolton ◽  
M. A. Sewell ◽  
J. M. Zande

2019 ◽  
Vol 316 (1) ◽  
pp. C92-C103 ◽  
Author(s):  
Hojin Kang ◽  
Zhigang Hong ◽  
Ming Zhong ◽  
Jennifer Klomp ◽  
Kayla J. Bayless ◽  
...  

Angiogenesis is initiated in response to a variety of external cues, including mechanical and biochemical stimuli; however, the underlying signaling mechanisms remain unclear. Here, we investigated the proangiogenic role of the endothelial mechanosensor Piezo1. Genetic deletion and pharmacological inhibition of Piezo1 reduced endothelial sprouting and lumen formation induced by wall shear stress and proangiogenic mediator sphingosine 1-phosphate, whereas Piezo1 activation by selective Piezo1 activator Yoda1 enhanced sprouting angiogenesis. Similarly to wall shear stress, sphingosine 1-phosphate functioned by activating the Ca2+ gating function of Piezo1, which in turn signaled the activation of the matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase during sprouting angiogenesis. Studies in mice in which Piezo1 was conditionally deleted in endothelial cells demonstrated the requisite role of sphingosine 1-phosphate-dependent activation of Piezo1 in mediating angiogenesis in vivo. These results taken together suggest that both mechanical and biochemical stimuli trigger Piezo1-mediated Ca2+ influx and thereby activate matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase and synergistically facilitate sprouting angiogenesis.


1991 ◽  
Vol 15 ◽  
pp. 17-25 ◽  
Author(s):  
Chi F. Ip ◽  
William D. Hibler ◽  
Gregory M. Flato

A generalized numerical model which allows for a variety of non-linear rheologies is developed for the seasonal simulation of sea-ice circulation and thickness. The model is used to investigate the effects (such as the role of shear stress and the existence of a flow rule) of different rheologies on the ice-drift pattern and build-up in the Arctic Basin. Differences in local drift seem to be closely related to the amount of allowable shear stress. Similarities are found between the elliptical and square cases and between the Mohr-Coulomb and cavitating fluid cases. Comparisons between observed and simulated buoy drift are made for several buoy tracks in the Arctic Basin. Correlation coefficients to the observed buoy drift range from 0.83 for the cavitating fluid to 0.86 for the square rheology. The average ratio of buoy-drift distance to average model-drift distance for several buoys is 1.15 (square), 1.18 (elliptical), 1.30 (Mohr-Coulomb) and 1.40 (cavitating fluid).


Sign in / Sign up

Export Citation Format

Share Document