Biomass yield, mineral content, and nutritive value of Poa pratensis as affected by non-clavicipitaceous fungal endophytes

2015 ◽  
Vol 14 (9) ◽  
Author(s):  
Santiago Lledó ◽  
Sara Rodrigo ◽  
Maria J. Poblaciones ◽  
Oscar Santamaria
2015 ◽  
Vol 405 (1-2) ◽  
pp. 197-210 ◽  
Author(s):  
Santiago Lledó ◽  
Sara Rodrigo ◽  
Maria J Poblaciones ◽  
Oscar Santamaria

2017 ◽  
Vol 74 (4) ◽  
pp. 841-852 ◽  
Author(s):  
Oscar Santamaria ◽  
Santiago Lledó ◽  
Sara Rodrigo ◽  
Maria J. Poblaciones

2021 ◽  
Vol 21 (1) ◽  
pp. 121-133
Author(s):  
K.P. Chethan ◽  
N.K.S. Gowda ◽  
T.M. Prabhu ◽  
K. Giridhar ◽  
S. Anandan ◽  
...  

1966 ◽  
Vol 25 (1) ◽  
pp. 52-57 ◽  
Author(s):  
K. M. Barth ◽  
G. W. Vander Noot ◽  
W. S. MacGeath ◽  
E. T. Koenegay

2019 ◽  
Vol 94 (3) ◽  
pp. 1087-1098 ◽  
Author(s):  
M. Acharya ◽  
A. J. Ashworth ◽  
D. M. Burner ◽  
J. M. Burke ◽  
D. H. Pote ◽  
...  

AbstractTemperate grass and legume yield and quality are markedly reduced during hot, dry summer months in the southern USA; therefore, browse species could add feed options for small ruminants during this season. Our objective was to compare total biomass yield and forage nutritive value of two browse species, leguminous bristly locust (Robinia hispida) and smooth sumac (Rhus glabra), as well as a leguminous shrub known as sericea lespedeza (Lespedeza cuneate), during summer months (June, July, August and September). Plants were sampled monthly during growing-seasons in 2012 and 2013 to determine biomass yield (foliar, shoot, and total above ground) and foliar nutritive value [crude protein (CP), acid detergent fiber (ADF), acid detergent lignin (ADL), and condensed tannins (CT)]. There was a species × harvest time interaction for foliar biomass yield (P = 0.0125). This interaction was likely due to low yield in June for bristly locust compared with sericea lespedeza and smooth sumac, but in all other months (July, August, and September) yields were similar for each species. Bristly locust had the highest CP (16.9%), followed by sericea lespedeza (14.8%), and smooth sumac (12.3%). Acid detergent fiber and ADL were similar between bristly locust (ADF 38.5%; ADL 24.1%) and sericea lespedeza (ADF 38.4%; ADL 23.1%), but was lower for smooth sumac (ADF 22.1%, ADL 6.3%; P < 0.05). Condensed tannins, an anti-nutritive yet anti-parasitic phenolic compounds, were highest in smooth sumac, intermediate in bristly locust, and lowest in sericea lespedeza. Plant foliar percentage (ratio of foliar to shoot mass), was highest in smooth sumac (55.1%), followed by sericea lespedeza (47.7%), and bristly locust (42.6%). Overall, smooth sumac had the highest foliar biomass and lowest ADF and ADL; however, this species had the lowest CP and highest CT. Consequently, average foliar biomass yield of all three browse species in our study far exceeded forage yield from dominant forage species [tall fescue (Schedonorus arundinaceus) and bermudagrass (Cyanodon dactylon)] in this region and may provide high-yielding, low input, anti-parasitic fodder for small ruminants during this period in the Southeastern U.S.


2007 ◽  
Vol 58 (9) ◽  
pp. 884 ◽  
Author(s):  
J. L. Jacobs ◽  
G. N. Ward

Dairy farms in southern Australia generally use a 2-pond system to manage dairy shed effluent. This system consists of a deep anaerobic first pond and a shallow aerobic second pond. The liquid in the second pond contains a range of nutrients that may have agronomic benefits for forages. The effect of applying second-pond dairy effluent to a summer turnip (Brassica rapa L.) crop over 3 consecutive summer periods was measured. Effluent was applied at 6 rates, 0, 15, 30, 45, 60, and 75 mm, approximately 6–8 weeks after turnips were sown each year. Turnips were assessed for dry matter (DM) accumulation, nutritive characteristics, and mineral content. In addition, total annual production for years 1 and 2 was calculated by including the DM accumulation from annual ryegrass grown from autumn to spring each year. Concentrations of nutrients within the effluent as an average over the 3 years were 31, 454, 20, and 149 kg/ML for phosphorus (P), potassium (K), sulfur (S), and nitrogen (N), respectively. In addition, effluent also contained 152 kg/ML of calcium (Ca), 225 kg/ML of magnesium (Mg), and 529 kg/ML of sodium (Na). Soil pH was generally unaffected with effluent application, while soil EC and total soluble salt (TSS) content increased with effluent addition. In the first year, application of effluent at 15 mm and higher resulted in increases in available K; however, in subsequent years, rates of 45 mm and higher led to an increase in available K, while for the control and lower effluent rates there was a marked decline in K status. In all years there was a linear increase (P < 0.05) in leaf, root, and total DM yields with applied effluent. For leaf, responses were 19, 50, and 26 kg DM per mm applied effluent and for roots, 10, 39, and 25 kg DM per mm applied effluent for years 1, 2, and 3, respectively. In years 2 and 3, turnip leaf crude protein (CP) content increased (P < 0.05) in a linear manner at rates of 0.046 and 0.044% per mm applied effluent, respectively. There was also a linear increase (P < 0.05) in turnip root CP in years 2 and 3 of 0.033 and 0.021% per mm applied effluent, respectively. In all years there was a linear increase (P < 0.05) in leaf K content, while for root K there was a quadratic trend (P < 0.05) for year 1 and a linear increase (P < 0.05) for years 2 and 3. The results from this study indicate that the use of dairy effluent can increase DM yield and improve the nutritive value of turnips through an increase in CP content. The data also indicate that this effect can be maintained over consecutive years, which in turn may provide greater flexibility for returning effluent to farm land. While results appear to indicate that the primary responses are due to N, further work is required to determine the effects of water and other nutrients within dairy effluent.


2001 ◽  
Vol 41 (2) ◽  
pp. 169 ◽  
Author(s):  
Y. J. Ru ◽  
J. A. Fortune

The nutritive value of 26 cultivars of dry, mature subterranean clover was evaluated at Shenton Park, Perth, Western Australia. The cultivars were divided into 3 maturity groups according to flowering time and each cultivar was sown in blocks comprising 4 replicates. The plots were grazed by sheep at 2-week intervals during the growing season. Dry mature plant material and soil were sampled in summer to examine the effect of grazing and cultivar on seed yield and nutritive value of feed residues. Cultivars heavily grazed in spring had a low herbage mass. There was no difference in seed yield and seed weight between heavily and lightly grazed cultivars. Dry matter digestibility and mineral content of dry residues was inconsistent for the 2 grazing treatments. The dry matter digestibility of dry, mature subterranean clover ranged from 40 to 56%, with a wide range of crude fibre, nitrogen and mineral content for the 26 cultivars. While most minerals in the dry residues were above the requirement for sheep, 7 cultivars had a zinc content less than the maintenance requirement for sheep. There was an imbalance for all cultivars in calcium: phosphorus with a range of 4–10: 1. Concurrent estimates on the yield and composition of seed indicated that seed can be resource of minerals for grazing animals in summer. Most cultivars had a seed yield over 100 g/m2 with that of 9 cultivars being over 130 g/m2. Seed was rich in nitrogen, sodium, phosphorus, potassium, magnesium, zinc and copper, and poor in sodium, calcium and manganese. However, there were no cultivars with an appropriate ratio of calcium and phosphorus. The imbalance in nitrogen and sulfur was a result of high nitrogen content with the ratio ranging from 19: 1 to 29: 1.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 272 ◽  
Author(s):  
Antonio Pannico ◽  
Christophe El-Nakhel ◽  
Giulia Graziani ◽  
Marios C. Kyriacou ◽  
Maria Giordano ◽  
...  

Selenium (Se) is considered essential for human nutrition as it is involved in the metabolic pathway of selenoproteins and relevant biological functions. Microgreens, defined as tender immature greens, constitute an emerging functional food characterized by overall higher levels of phytonutrients than their mature counterparts. The nutraceutical value of microgreens can be further improved through Se biofortification, delivering Se-enriched foods and potentially an enhanced content of bioactive compounds. The current study defined the effect of sodium selenate applications at three concentrations (0, 8, and 16 μM Se) on the bioactive compounds and mineral content of coriander, green basil, purple basil, and tatsoi microgreens grown in soilless cultivation. Analytical emphasis was dedicated to the identification and quantification of polyphenols by UHPLC-Q-Orbitrap-HRMS, major carotenoids by HPLC-DAD, and macro micro-minerals by ICP-OES. Twenty-seven phenolic compounds were quantified, of which the most abundant were: Chlorogenic acid and rutin in coriander, caffeic acid hexoside and kaempferol-3-O(caffeoyl) sophoroside-7-O-glucoside in tatsoi, and cichoric acid and rosmarinic acid in both green and purple basil. In coriander and tatsoi microgreens, the application of 16 μM Se increased the total phenols content by 21% and 95%, respectively; moreover, it improved the yield by 44% and 18%, respectively. At the same Se dose, the bioactive value of coriander and tatsoi was enhanced by a significant increase in rutin (33%) and kaempferol-3-O(feruloyl)sophoroside-7-O-glucoside (157%), respectively, compared to the control. In green and purple basil microgreens, the 8 μM Se application enhanced the lutein concentration by 7% and 19%, respectively. The same application rate also increased the overall macroelements content by 35% and total polyphenols concentration by 32% but only in the green cultivar. The latter actually had a tripled chicoric acid content compared to the untreated control. All microgreen genotypes exhibited an increase in the Se content in response to the biofortification treatments, thereby satisfying the recommended daily allowance for Se (RDA-Se) from 20% to 133%. The optimal Se dose that guarantees the effectiveness of Se biofortification and improves the content of bioactive compounds was 16 μM in coriander and tatsoi, and 8 μM in green and purple basil.


2011 ◽  
Vol 62 (5) ◽  
pp. 374 ◽  
Author(s):  
M. R. Islam ◽  
S. C. (Yani) Garcia ◽  
D. Henry

This study was conducted to investigate the potentials of normalised difference vegetation index (NDVI), nitrogen (N) concentration (%), and N content (g/plant) of whole maize plant to estimate yield and nutritive value of hybrid forage maize. Hybrid forage maize was grown with two rates of pre-sowing fertiliser N (0, 135 kg/ha) and three rates of post-sowing fertiliser N (0, 79, 158 kg N/ha) applied at the six-leaf stage. Data on the NDVI and N (% and g/plant) of maize were collected at 2-, 3-, 6-, 8-, 12-, 16-, 18-leaf stages and at harvest. Metabolisable energy (ME) content of the whole maize plant at harvest was estimated from in vitro digestibility. Simple, polynomial, and multiple regression analyses were conducted and only the best-fit models were selected. The 8-leaf stage was found to be the most effective stage for use of the NDVI in predicting biomass yield (R2 = 0.81), grain yield (R2 = 0.72), and N (%) (R2 = 0.92) of forage maize. Nitrogen (%) at the 8-leaf stage was also best related to biomass yield (R2 = 0.88). Multiple regressions at the 3-leaf stage increased the coefficient of determination for both biomass yield and grain yield (R2 = 0.77) over the relationships obtained from N (%) of the whole plant at 2- or 3-leaf stage. The NDVI and N (%) of the whole plant at 8-leaf stage were the best predictors of yield, but failed to predict ME content of the hybrid forage maize. Multiple regression models at the 3-leaf stage were almost as effective as the NDVI and N (%) of whole maize plant at the 8-leaf stage in predicting biomass and grain yield of forage maize.


2000 ◽  
Vol 51 (8) ◽  
pp. 1047 ◽  
Author(s):  
Y. J. Ru ◽  
J. A. Fortune

With the decline in pasture quality in southern Australia, the development of management strategies to improve nutrient supply for grazing animals is essential and requires a clear understanding of the interaction between animals and plants. The impact of grazing intensity on the morphology of subterranean clover was previously examined. This paper reports the effect of grazing intensity on the nutritive value of subterranean clover, and the variation in quality of cultivars during the growing season. Grazing intensity influenced nutritive value and interacted with cultivar maturity. Heavy grazing depressed dry matter digestibility (DMD) by 5 percentage units in October for early maturity cultivars but increased DMD by 3 percentage units in September for mid maturity cultivars. The influence of grazing intensity on nitrogen content was small. Heavy grazing did not affect acid detergent fibre for the early maturity group, but depressed it for the mid maturity group throughout the season. Acid detergent lignin remained comparable for all cultivars during the season. Mineral content of subterranean clover showed variable response to grazing treatments. Nutritive value varied among cultivars within each maturity group. DMD ranged over 53–64%, 44–62%, and 45–53% for early, mid, and late maturity groups, respectively, at the end of the growing season. The cultivar rank in all nutritional parameters changed with the progress of the season. The large ranges in the decline rate of DMD within each maturity group during the last 8 weeks of growth gave an indication of the potential quality of the cultivars during late spring and early summer. Despite the variation in mineral content there were no cultivars in which the concentration of minerals was below the minimum requirements of sheep. These results indicate that there is a potential for the selection of high quality cultivars within a breeding program, and that indicative targets of grazing intensity need to be further developed with a focus on pasture quality.


Sign in / Sign up

Export Citation Format

Share Document