The effect of extracellular matrix protein binding and culture confluence status on the effect of ROCK on TNF-α- and IL-1-stimulated CXCL8 secretion by colonic epithelial cell

2019 ◽  
Vol 55 (10) ◽  
pp. 854-860 ◽  
Author(s):  
Isabelle M. Weishaar ◽  
Sayantan Banerjee ◽  
Dennis W. McGee
Development ◽  
1994 ◽  
Vol 120 (3) ◽  
pp. 661-671 ◽  
Author(s):  
J. Julian ◽  
R. Chiquet-Ehrismann ◽  
H.P. Erickson ◽  
D.D. Carson

Expression of tenascin, an extracellular matrix protein associated with morphogenetic events and altered states of cellular adhesion, was examined in mouse uterus during the peri-implantation period. A uniform low level expression of tenascin was detected in stromal extracellular matrix during the estrous cycle and days 1 through 4 of early pregnancy. During the period of blastocyst attachment (day 4.5), an intense deposition of tenascin fibrils was located in the extracellular matrix of stroma immediately subjacent to the uterine epithelium surrounding the attaching blastocyst. This localized intensity of tenascin expression was both spatially and temporally restricted. By day 5.5, differentiation of stroma in the immediate area around the embryo to form the primary decidual zone was accompanied by a reduced amount of tenascin expression in the form of fragmented fibrils. Tenascin also could be induced by an artificial stimulus in uterine stroma of mice that had been hormonally prepared for implantation. The ability of artificial stimuli to induce tenascin expression suggested that the tenascin-inducing signals were derived from uterine cells, presumably lumenal epithelium, rather than embryonic cells. Consistent with this, conditioned medium from primary cultures of uterine epithelium was found to induce tenascin expression (2- to 4-fold) in isolated uterine stroma. Artificial stimuli generated a temporal pattern of tenascin expression similar to that observed during early pregnancy; however, in the artificially induced model, tenascin was induced in stroma immediately subjacent to lumenal epithelium along the entire length of the uterus. Purified tenascin and a recombinant tenascin fragment consisting of alternatively spliced fibronectin type III repeats, interfered with maintenance of uterine epithelial cell adhesion to Matrigel. In contrast, other recombinant tenascin fragments or fibronectin had no effect in this regard. Tenascin had no effect on adhesion of uterine stroma. Collectively, these results suggest that stimulation of TN expression in stromal extracellular matrix in vivo occurs via hormonally regulated, epithelial-mesenchymal interactions and serves as an early marker for uterine receptivity and the attachment phase of implantation. Furthermore, tenascin may facilitate embryo penetration by disrupting uterine epithelial cell adhesion to underlying basal lamina.


2018 ◽  
Vol 19 (3) ◽  
pp. 721-730 ◽  
Author(s):  
Hadi Hezaveh ◽  
Steffen Cosson ◽  
Ellen A. Otte ◽  
Guannan Su ◽  
Benjamin D. Fairbanks ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 95337-95341
Author(s):  
Conor M. Gomes ◽  
Leila F. Deravi

A synthetic strategy is described to repurpose human extracellular matrix protein binding domains to catalyse the condensation of silica nanostructures in water for a seamlessly integrated biocomposite material.


2018 ◽  
Vol 38 (2) ◽  
pp. 255-266 ◽  
Author(s):  
M Sözmen ◽  
AK Devrim ◽  
YB Kabak ◽  
T Devrim

Periostin is an extracellular matrix protein from the fasciclin family that guides cellular trafficking and extracellular matrix organization. Periostin stimulates mature cardiomyocytes to reenter the cell cycle. The molecular mechanism behind such stimulation remains to be explored. A DNA microarray technology constituting 30,429 gene-level probe sets was utilized to investigate effects of recombinant murine periostin peptide on the gene expression pattern in a rat model of isoproterenol (ISO)-induced myocardial injury. The experiment was performed on 84 adult male Sprague-Dawley rats in four groups ( n = 21): (1) control group, (2) only periostin applied group, (3) ISO cardiotoxicity group, and (4) ISO + periostin group. The experiment was continued for 28 days, and rats were killed on days 1, 7, and 28 ( n = 7). Microarray analyses revealed that periostin significantly altered the expression of at least ±2-fold of 2474 genes in the ISO + periostin group compared to the ISO cardiotoxicity group of which 521 genes altered out of 30,429 gene-level probe sets. Ingenuity pathway analysis indicated that multiple pathway networks were affected by periostin, with predominant changes occurring in the expression of genes involved in oxidative phosphorylation, oxidative stress, fatty acid metabolism, and TNF-α NF-κB signaling pathways. These findings indicate that periostin alters gene expression profile in the ISO-induced myocardial injury and modulates local myocardial inflammation, possibly mitigating inflammation through TNF-α NF-κB signaling pathway along with a decreased Casp7 activity and apoptotic cell death.


2007 ◽  
Vol 177 (4S) ◽  
pp. 421-422
Author(s):  
Ganka Nikolova ◽  
Christian O. Twiss ◽  
Hane Lee ◽  
Nelson Stanley ◽  
Janet Sinsheimer ◽  
...  

Author(s):  
Aniel Moya-Torres ◽  
Monika Gupta ◽  
Fabian Heide ◽  
Natalie Krahn ◽  
Scott Legare ◽  
...  

Abstract The production of recombinant proteins for functional and biophysical studies, especially in the field of structural determination, still represents a challenge as high quality and quantities are needed to adequately perform experiments. This is in part solved by optimizing protein constructs and expression conditions to maximize the yields in regular flask expression systems. Still, work flow and effort can be substantial with no guarantee to obtain improvements. This study presents a combination of workflows that can be used to dramatically increase protein production and improve processing results, specifically for the extracellular matrix protein Netrin-1. This proteoglycan is an axon guidance cue which interacts with various receptors to initiate downstream signaling cascades affecting cell differentiation, proliferation, metabolism, and survival. We were able to produce large glycoprotein quantities in mammalian cells, which were engineered for protein overexpression and secretion into the media using the controlled environment provided by a hollow fiber bioreactor. Close monitoring of the internal bioreactor conditions allowed for stable production over an extended period of time. In addition to this, Netrin-1 concentrations were monitored in expression media through biolayer interferometry which allowed us to increase Netrin-1 media concentrations tenfold over our current flask systems while preserving excellent protein quality and in solution behavior. Our particular combination of genetic engineering, cell culture system, protein purification, and biophysical characterization permitted us to establish an efficient and continuous production of high-quality protein suitable for structural biology studies that can be translated to various biological systems. Key points • Hollow fiber bioreactor produces substantial yields of homogenous Netrin-1 • Biolayer interferometry allows target protein quantitation in expression media • High production yields in the bioreactor do not impair Netrin-1 proteoglycan quality Graphical abstract


2002 ◽  
Vol 267 (4) ◽  
pp. 440-446 ◽  
Author(s):  
A. Kapetanopoulos ◽  
F. Fresser ◽  
G. Millonig ◽  
Y. Shaul ◽  
G. Baier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document