Spin-up and spin-down times of rotational air flow depended on mean air velocity and surface roughness on inner surface in cylindrical vortex chamber

2004 ◽  
Vol 13 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Akira Ogawa ◽  
Hiroyuki Murakami
Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 549 ◽  
Author(s):  
Bruna Sinjari ◽  
Gianmaria D’Addazio ◽  
Martina Bozzi ◽  
Manlio Santilli ◽  
Tonino Traini ◽  
...  

The aim of this in vitro study was to evaluate the enamel surface topography after treatment with three air polishing powders: Glycine (A), erythritol (B), and sodium bicarbonate (C) (Air Flow Soft, Plus and Classic powders, EMS Electro Medical Systems S.A., Nyon, Switzerland). Fifteen extracted incisors were randomly divided into three groups of five teeth each, A, B and C, respectively. The teeth were blocked in plaster bases, washed, dried and half-covered with polytetrafluoroethylene strips before treatment. In this way, each half-treated dental element became test and control of itself. Comparative statistical analysis of Rq (geometric average of the deviations occurring in roughness profile) was performed. The scanning electron microscope (SEM) analysis showed different degrees of surface roughness between the groups, decreasing after treatment. In addition, a statistically significant reduction p < 0.05 was present in group C (Rq mean non-treated 108.17 µm, 95% CI: 97.29–124.01 and Rq mean treated 86.78 µm, 95% CI: 80.63–93.70). A decrease in surface roughness post-treatment was not observed in group A and B. Therefore, it may be concluded that the air flow powders tested herein can be used on dental enamel to reduce the surface roughness due to function and the action of dental therapies.


2021 ◽  
Vol 13 (9) ◽  
pp. 4748
Author(s):  
Edwin Villagran ◽  
Carlos Bojacá ◽  
Mohammad Akrami

The use of covered structures is an alternative increasingly used by farmers to increase crop yields per unit area compared to open field production. In Latin American countries such as Colombia, productive areas are located in with predominantly hillside soil conditions. In the last two decades, farmers have introduced cover structures adapted to these soil conditions, structures for which the behavior of factors that directly affect plant growth and development, such as microclimate, are still unknown. Therefore, in this research work, a CFD-3D model successfully validated with experimental data of temperature and air velocity was implemented. The numerical model was used to determine the behavior of air flow patterns and temperature distribution inside a Colombian passive greenhouse during daytime hours. The results showed that the slope of the terrain affects the behavior of the air flow patterns, generating thermal gradients inside the greenhouse with values between 1.26 and 16.93 °C for the hours evaluated. It was also found that the highest indoor temperature values at the same time were located in the highest region of the terrain. Based on the results of this study, future researches on how to optimize the microclimatic conditions of this type of sustainable productive system can be carried out.


2014 ◽  
Vol 627 ◽  
pp. 153-157
Author(s):  
Nawadee Srisiriwat ◽  
Chananchai Wutthithanyawat

The temperature distribution of hot air flow in heating zone of a rectangular duct has been investigated for drying application. The experimental set-up consists of a heater and a fan to generate the hot air flow in the range of temperature from 40 to 100°C and the range of air velocity between 1.20 and 1.57 m/s. An increase of the heater power supply increases the hot air temperature in the heating zone while an increase of air velocity forced by fan decreases the initial temperature at the same power supply provided to generate the hot air flow. The temperature distribution shows that the hot air temperature after transferring through air duct decreases with an increase of the length of the rectangular duct. These results are very important for the air flow temperature and velocity control strategy to apply for heating zone design in the drying process.


2014 ◽  
Vol 23 (5) ◽  
pp. 055202 ◽  
Author(s):  
Huan Wang ◽  
Li-Hua Cao ◽  
Zong-Qing Zhao ◽  
Ming-Yang Yu ◽  
Yu-Qiu Gu ◽  
...  

The shape of a radiator cover is crucial either in determining the pattern of air flow or in increasing the same through the radiator core thereby increasing the thermal efficiency, thus making it a necessity to understand it. Moreover the parts circumjacent to the core namely the upper tank, lower tank, cooling fan, fins, tubes, etc promote the air flow rate. Also it is to note that the air flow rate of discharge gases from radiator core is one of the prime factors in determining the automobile cooling system. Initially factors such as temperature, pressure, air flow rate that affect the performance are obtained in order to derive out the entities of operation. One of the observations that can be made through this paper is that as the volume of the coolant increases, the rate of heat dissipation increases, also parameters like inlet temperature and volume flow rate of coolant, air velocity, temperature drop and drop in pressure of coolant are factors that contribute in radiator performance evidently.


2011 ◽  
Vol 374-377 ◽  
pp. 494-497
Author(s):  
Yi Rong Dang ◽  
An Gui Li ◽  
Hai Guo Yin

This paper presents an energy efficient ventilation method—dam tunnel air handling for hydropower station ventilation. The heat transfer characteristic between supply air and the dam tunnel is studied by model experiment. Supply air velocity, air temperature and dam tunnel surface roughness are chosen as the mainly influencing factors, the air temperature distribution along airflow direction are measured and analyzed in detail. The results show that the heat transfer performance in dam tunnel is improved as the increased of supply air temperature and the dam tunnel surface roughness, or maintained the supply air velocity at a lower level. This experimental study and its results are helpful to develop alternative and efficient systems for hydropower station ventilation.


2014 ◽  
Vol 695 ◽  
pp. 622-626 ◽  
Author(s):  
Mohamad Nor Musa ◽  
Mohd Nurul Hafiz Mukhtar

This paper present new result for experimental analysis of air flow velocity and pressure distributions between two ducts bend: (1) 90° duct bend with a single turning vane having 0.03m radius and (2) 90° duct bend with double turning vane, in 0.06 × 0.06 m duct cross section. The experiment used five different Reynolds numbers chosen between the ranges 1 ×104 and 6×104. Each experiment has four point measurements: (1) point 1 and point 2 at cross section A-A and (2) point 3 and point 4 at cross section B-B. The first experimental study used single turning vane radius 0.03m with inlet air velocity from 2.5m/s to 12.2m/s. And for the second experiment that used square turning vane with 0.03m radius. In experiment 2, the inlet air velocity also start from 2.5m/s to 12.2m/s. From analysis results, the pressure drop in experiment 1 is higher than experiment 2. As example the maximum pressure drop at 7.5m/s inlet air velocity between point 1 and 3 was found to be 71.6203 Pa in experiment 1 as compared to 61.8093 Pa in experiment 2. The velocity after duct bend is greater when using double turning vane compare used single turning vane as maximum velocity at point 3 in experiment 2 compare to velocity at point 3 in experiment 1 that is 55.677× 10-4 m/s and 54.221× 10-4 m/s. The velocity at duct wall is equal to zero. When increase the value of Reynolds number or inlet velocity, the maximum velocity and total pressure also increase. For example in experiment 1 at point 1, the velocity is 48.785 × 10-4 m/s at Reynolds number 1 ×104 and velocity 65.115×10-4 m/s at Reynolds number 12.2 ×104 . Velocity flow in duct section are lower than inlet velocity. In experiment 1, the inlet velocity is 2.5m/s meanwhile the maximum velocity in the duct section at point 2 is 73.075×10-4 m/s that is much more lower than inlet velocity.


2019 ◽  
Vol 15 (10) ◽  
Author(s):  
Omid Reza Roustapour ◽  
Hamid Reza Gazor ◽  
Kazemi Farzin

AbstractIn this study, air deflector plates were used in order to increase the air elapsed time in the chamber. The air flow pattern was simulated using computational fluid dynamics. The geometry of the chamber was produced in 2D and meshed by triangular and quadrilateral elements, boundary conditions were defined and the governing equations solved. Modeling of flow without any deflectors depicted the air flowed to the chamber conducted to the outlet without any distortion. Air vortices were generated when the deflectors defined in model. To evaluate the influence of deflectors on drying period, constructed plates installed in the dryer chamber and melon slices were dried when deflectors used or not. Simulation results showed magnitude of the air velocity was increased and temperature uniform distribution developed on the surface of trays. The outlet temperature was also decreased up to 10 % and drying time reduced to 22 % when the deflectors were employed.


Sign in / Sign up

Export Citation Format

Share Document