Theoretical energy consumption analytical method for metal separation process

2010 ◽  
Vol 19 (4) ◽  
pp. 377-382 ◽  
Author(s):  
Dehong Xia ◽  
Yingchun Shang ◽  
Ling Ren ◽  
Yifan Li
2014 ◽  
Vol 881-883 ◽  
pp. 653-658 ◽  
Author(s):  
Yong Qiang Xiong ◽  
Ben Hua

In this paper, a cryogenic air separation process with LNG cold energy utilization is proposed to produce liquid nitrogen and high pressure pure oxygen gas economically. To reduce the electric energy consumption of air separation products, liquid nitrogen have been produced by condensing the separated pure nitrogen gas with LNG cold energy utilization, and the recycled nitrogen is served to transfer cold energy from LNG stream to cool off air stream in the proposed cryogenic air separation process. The specifications of streams and the major equipments of the air separation process are simulated with Aspen Plus software and the main parameters analysis are performed. The results show that the energy consumption of the proposed air separation process with LNG cold energy utilization decreased about 58.2% compared with a conventional cryogenic air separation process. The compressed pressure of recycled nitrogen has a big impact on the cost of air separation products and utilization efficiency of LNG cold energy. The LNG cold energy could be fully utilized when the recycled nitrogen has been compressed to above 6.5MPa.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Suksun Amornraksa ◽  
Ittipat Subsaipin ◽  
Lida Simasatitkul ◽  
Suttichai Assabumrungrat

Abstract Separation process is very crucial in bioethanol production as it consumes the highest energy in the process. Unlike other works, this research systematically designed a suitable separation process for bioethanol production from corn stover by using thermodynamic insight. Two separation processes, i.e., extractive distillation (case 2) and pervaporation (case 3), were developed and compared with conventional molecular sieve (case 1). Process design and simulation were done by using Aspen Plus program. The process evaluation was done not only in terms of energy consumption and process economics but also in terms of environmental impacts. It was revealed that pervaporation is the best process in all aspects. Its energy consumption and carbon footprint are 60.8 and 68.34% lower than case 1, respectively. Its capital and production costs are also the lowest, 37.0 and 9.88% lower than case 1.


Author(s):  
Anoire Ben Jdidia ◽  
Alain Bellacicco ◽  
Maher Barkallah ◽  
Hichem Hassine ◽  
Mohamed Taoufik Khabou ◽  
...  

2009 ◽  
Vol 63 (5) ◽  
pp. 397-405 ◽  
Author(s):  
Milance Mitovski ◽  
Aleksandra Mitovski

The separation process of atmospheric air into its components by means of cryogenic low-pressure procedure, which takes place in the Oxygen plant in the Copper Mining and Smelting Complex, yields various products of different quantities and purities. Proper assessment of the energy consumption, hence assignments production cost of individual products may present considerable problem. For that goal, the least invested technical operation was adopted as criteria, and was restrained for all costs of production and distribution of specific energy. Case study was carried out in the Oxygen factory by monitoring producing parameters for the process in the 2007 year. Based on the monitoring of production parameters and their costs for 20 months in the period 2004-2005, correlation equations for power consumption in the total monthly amount and per mass of produced gaseous oxygen were created. The energy and exergy efficiency of the air separation process into the components are expressed as the ratio of input and useful energy and exergy of the process. On the basis of the adopted criteria, the assignments of energy consumption and production costs for cryogenic air separation process into the components are as follows: 82.59% for gaseous oxygen, 14.04% for liquid oxygen, 1.39% for gaseous nitrogen and 1.98% for liquefied nitrogen. The air separation efficiency is achieved in the amount of energy 0.0872-0.1179 and exergy 0.0537-0.1247. Power consumption per mass of the products in 2007 year is 1325.059 kWh/t of liquid oxygen, 828.765 kWh/t of liquid nitrogen, 429.812 kWh/t of gaseous oxygen and 309.424 kWh/t of nitrogen gas. Production costs of the technical gases at the dawn of the factory are: 6730.69 RSD/t of liquid oxygen, 4209.74 RSD/t of liquid nitrogen, 2183.25 RSD/t of gaseous oxygen and 1571.73 RSD/t of gaseous nitrogen.


2020 ◽  
Vol 35 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Magnus Heldin ◽  
Urban Wiklund

AbstractGroundwood pulping is a process that employs large machines, making them difficult to use in research. Lab scale grinders exist, but even though they are smaller, the sizes of the grinding stones or segments make them cumbersome to exchange and tailor. This study presents a method and an apparatus for investigating the detailed mechanisms and the energy requirements behind the fibre separation process. A well-defined grinding tool was used at three different temperatures to demonstrate that the equipment can differentiate levels of energy consumption and defibration rates, confirming the well-known fact that a higher temperature facilitates defibration. It is also shown how the equipment can be used to study the influence of grinding parameters, exemplified by the effect of temperature on the way fibres are separated and the character of the produced fibres. A key feature of the equipment is the use and evaluation of small grinding surfaces, more readily designed, produced, evaluated and studied. This reduces both the cost and time necessary for testing and evaluating. At the same time, a technique to produce well defined grinding surfaces was employed, which is necessary for repeatability and robust testing, not achievable with traditional grinding stones.


2021 ◽  
Vol 314 ◽  
pp. 08001
Author(s):  
Abdelkbir Errougui ◽  
Asmaa Benbiyi ◽  
Mohamed El Guendouzi

Energy consumption is a purely thermodynamic concept very useful in several scientific fields such as desalination, oceanography, biology, geochemistry and environmental processes, as well as in industrial applications. In this investigation, based on a thermodynamic approach, the calculation of energy consumption was evaluated during the desalination of seawater simulated to the aqueous ternary system {NaCl + KCl}(aq). The mixing ionic parameters, obtained in our previous work, are used to predict the osmotic and activity coefficients in the aqueous solutions at different salinities ranging from 3.6 up to 72 g.L-1 at T = 298.15 K using the ion interaction model. The theoretical energy consumption of desalination was calculated at various salinities and recovery ratios.


Sign in / Sign up

Export Citation Format

Share Document