Effect of intermediate heat treatment on microstructure and texture evolution of continuous cast Al-Mn-Mg alloy sheet

2006 ◽  
Vol 37 (6) ◽  
pp. 1887-1898 ◽  
Author(s):  
Jiantao Liu ◽  
S. W. Banovic ◽  
R. J. Fields ◽  
J. G. Morris
2021 ◽  
pp. 163238
Author(s):  
Seong-Eum Lee ◽  
Min-Seong Kim ◽  
Young-Wook Chae ◽  
Hwanuk Guim ◽  
Jaiveer Singh ◽  
...  

2007 ◽  
Vol 345-346 ◽  
pp. 89-92
Author(s):  
Shi Hoon Choi ◽  
Y.S. Song ◽  
Jong Kweon Kim ◽  
Hyoung Wook Kim ◽  
Suk Bong Kang

Evolution of crystallographic texture by hot rolling deformation at the temperature of 200°C was investigated by hot rolling tests on as-cast Al-5wt%Mg alloy fabricated by a new strip cast technology. Texture variation through the thickness direction in the Al-5wt%Mg alloy was examined experimentally. Macrotexture and microtexture measurements were conducted using X-ray diffractometer and electron backscatter diffraction (EBSD), respectively. Experimental investigation reveals that the evolution of texture and microstructure is strongly dependent on a distance from center of the Al-5wt%Mg alloy sheet. It was found that the shear texture components tend to be increased at the surface region of the hot-rolled specimen.


2008 ◽  
Author(s):  
Qiang Zeng ◽  
Jianhui Xu ◽  
Xiuping Jiang ◽  
Tony Zhai ◽  
Xiyu Wen

2010 ◽  
Vol 654-656 ◽  
pp. 1195-1200 ◽  
Author(s):  
Ren Long Xin ◽  
Bo Li ◽  
Qing Liu

In this study, a well-textured AZ31 Mg alloy sheet was friction stir (FS) processed, and the microstructure and texture evolution in various regions of the processed alloy were examined by optical microscopy (OM) and electron back scatter diffraction (EBSD). The results showed that the grain size in the FS zone was significantly refined compared to that in the base material (BM). The average grain size in the thermomechanically affected zone (TMAZ) and heat-affected zone (HAZ) was comparable with that in the BM. There is a gradual change of local texture from BM to FS zone due to plastic flow together with heating input during the FS processing. The <0002> direction was roughly parallel to the cylindrical pin surface normal of the FS zone. The <0002> direction in the HAZ is similar to that in the BM, but more diffuse. The <0002> direction in the TMAZ was tilted 25~30o away from the ND and there is a distinct boundary between the FS zone and TMAZ at the advancing side which introduced an incompatibility between the FS zone and TMAZ. This might explain the fact that the transverse FS processed Mg alloys commonly fracture at the advancing side during tensile tests.


2020 ◽  
Author(s):  
Hemendra Patle ◽  
Venkateswarlu Badisha ◽  
Yogeshwar Chakrapani Venkatesan ◽  
Siva Irullappasamy ◽  
Ratna Sunil B ◽  
...  

2021 ◽  
Vol 64 ◽  
pp. 620-632
Author(s):  
Alexander Malikov ◽  
Anatoly Orishich ◽  
Igor Vitoshkin ◽  
Evgeniy Karpov ◽  
Alexei Ancharov

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1407
Author(s):  
Tianyu Yao ◽  
Kui Wang ◽  
Haiyan Yang ◽  
Haiyan Jiang ◽  
Jie Wei ◽  
...  

A method of forming an Mg/Al intermetallic compound coating enriched with Mg17Al12 and Mg2Al3 was developed by heat treatment of electrodeposition Al coatings on Mg alloy at 350 °C. The composition of the Mg/Al intermetallic compounds could be tuned by changing the thickness of the Zn immersion layer. The morphology and composition of the Mg/Al intermetallic compound coatings were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron backscattered diffraction (EBSD). Nanomechanical properties were investigated via nano-hardness (nHV) and the elastic modulus (EIT), and the corrosion behavior was studied through hydrogen evolution and potentiodynamic (PD) polarization. The compact and uniform Al coating was electrodeposited on the Zn-immersed AZ91D substrate. After heat treatment, Mg2Al3 and Mg17Al12 phases formed, and as the thickness of the Zn layer increased from 0.2 to 1.8 μm, the ratio of Mg2Al3 and Mg17Al12 varied from 1:1 to 4:1. The nano-hardness increased to 2.4 ± 0.5 GPa and further improved to 3.5 ± 0.1 GPa. The Mg/Al intermetallic compound coating exhibited excellent corrosion resistance and had a prominent effect on the protection of the Mg alloy matrix. The control over the ratio of intermetallic compounds by varying the thickness of the Zn immersion layer can be an effective approach to achieve the optimal comprehensive performance. As the Zn immersion time was 4 min, the obtained intermetallic compounds had relatively excellent comprehensive properties.


Sign in / Sign up

Export Citation Format

Share Document