scholarly journals Desulfurization Behavior of Incoloy® 825 Superalloy by CaO-Al2O3-MgO-TiO2 Slag

Author(s):  
Jin Hyung Cho ◽  
Johan Martinsson ◽  
Du Sichen ◽  
Joo Hyun Park

AbstractNi-based superalloy, which has excellent high-temperature strength and corrosion resistance, is mainly used in aviation materials, high-performance internal combustion engines, and turbines for thermal and nuclear power generation. For this reason, refining the impurities in Ni-based superalloys is a very important technical task. Nevertheless, the original technology for the melting and refining of Ni-based superalloys is still insufficient. Therefore, in this study, the effect of the CaO-Al2O3-MgO-TiO2 slag on the removal efficiency of an impurity element sulfur in Incoloy® 825 superalloy, one of the representative Ni-based superalloys, was investigated. The desulfurization behavior according to the change of TiO2 content and CaO/Al2O3 (=C/A, basicity) ratio as experimental variables was observed at 1773 K (1500 °C). Although the TiO2 content in the slag increases to 15 mass pct, the mass transfer coefficient of sulfur in molten alloy showed a constant value. Alternatively, under the condition of C/A > 1.0 of slag, the mass transfer coefficient of sulfur showed a constant value, whereas under the condition of C/A < 1.0, the mass transfer coefficient of sulfur greatly decreased as CaO decreased. Hence, in the desulfurization of Incoloy® 825 superalloy using the CaO-Al2O3-MgO-TiO2 slag, the TiO2 content in the slag does not have a considerable effect on the desulfurization rate and desulfurization mechanism (metal phase mass transfer controlled regime), but the basicity of the slag has a significant effect on desulfurization mechanism. When the slag basicity decreases below the critical level, i.e., C/A < 1.0, which is corresponding to sulfur distribution ratio, Ls < 200, it was confirmed that the desulfurization mechanism shifts from the metal phase mass transfer-controlled regime to the slag phase mass transfer-controlled regime due to the variation in the physicochemical properties of the slag such as viscosity and sulfide capacity. In addition, the different desulfurization rates between steel and Ni alloy melts were discussed by employing the diffusivity of sulfur in both systems.

2013 ◽  
Vol 690-693 ◽  
pp. 246-251
Author(s):  
Yu Yue ◽  
Bo Zhang ◽  
Zheng Liang Xue

The desulphurization kinetics in ladle refining was analyzed, and the restrictive link for the desulfurization was selected based on previous research. Then the kinetics of desulfurization model in LF refining was developed and the empirical formula of sulfur ratio was summarized. The result by calculated shows that there is a good linear correlation between desulfurization rate and time, and the mass transfer coefficient D=3.79x10-5m/min.


2012 ◽  
Vol 550-553 ◽  
pp. 1900-1903 ◽  
Author(s):  
Mohd Sharizan Md Sarip ◽  
Noor Azian Morad

Subcritical water extraction (SWE) is introduced in the extraction of ginger bioactive compounds, namely 6-gingerol and 6-shagoal. The extraction mechanism is identified using mass transfer coefficient model. The overall mass transfer coefficient, k or driving force for each compound is measured through experimental determination. Compound identification and analysis iss conducted using High Performance Liquid Chromatography (HPLC). The k value for 6-gingerol and 6-shagoal under optimized condition (130°C, 3.5MPa) of 28:3 (ml:g) solvent to sample ratio are 0.02849 cm/min and 0.04873 cm/min, respectively.


1986 ◽  
Vol 51 (10) ◽  
pp. 2127-2134 ◽  
Author(s):  
František Potůček ◽  
Jiří Stejskal

Absorption of oxygen into water and aqueous solutions of poly(acrylamides) was studied in an absorber with a wetted sphere. The effects of changes in the liquid flow rate and the polymer concentration on the liquid side mass transfer coefficient were examined. The results are expressed by correlations between dimensionless criteria modified for non-Newtonian liquids whose flow curve can be described by the Ostwald-de Waele model.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Sher Ahmad ◽  
Gabriela Vollet Marson ◽  
Waheed Ur Rehman ◽  
Mohammad Younas ◽  
Sarah Farrukh ◽  
...  

Abstract Background In this research work, a coupled heat and mass transfer model was developed for salt recovery from concentrated brine water through an osmotic membrane distillation (OMD) process in a hollow fiber membrane contactor (HFMC).The model was built based on the resistance-in-series concept for water transport across the hydrophobic membrane. The model was adopted to incorporate the effects of polarization layers such as temperature and concentration polarization, as well as viscosity changes during concentration. Results The modeling equations were numerically simulated in MATLAB® and were successfully validated with experimental data from literature with a deviation within the range of 1–5%. The model was then applied to study the effects of key process parameters like feed concentrations, osmotic solution concentration, feed, and osmotic solution flow rates and feed temperature on the overall heat and mass transfer coefficient as well as on water transport flux to improve the process efficiency. The mass balance modeling was applied to calculate the membrane area based on the simulated mass transfer coefficient. Finally, a scale-up for the MD process for salt recovery on an industrial scale was proposed. Conclusions This study highlights the effect of key parameters for salt recovery from wastewater using the membrane distillation process. Further, the applicability of the OMD process for salt recovery on large scale was investigated. Sensitivity analysis was performed to identify the key parameters. From the results of this study, it is concluded that the OMD process can be promising in salt recovery from wastewater.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4329
Author(s):  
Radek Šulc ◽  
Jan Dymák

The gas–liquid hydrodynamics and mass transfer were studied in a concentric tube internal jet-loop airlift reactor with a conical bottom. Comparing with a standard design, the gas separator was equipped with an adjustable deflector placed above the riser. The effect of riser superficial gas velocity uSGR on the total gas holdup εGT, homogenization time tH, and overall volumetric liquid-phase mass transfer coefficient kLa was investigated in a laboratory bioreactor, of 300 mm in inner diameter, in a two-phase air–water system and three-phase air–water–PVC–particle system with the volumetric solid fraction of 1% for various deflector clearances. The airlift was operated in the range of riser superficial gas velocity from 0.011 to 0.045 m/s. For the gas–liquid system, when reducing the deflector clearance, the total gas holdup decreased, the homogenization time increased twice compared to the highest deflector clearance tested, and the overall volumetric mass transfer coefficient slightly increased by 10–17%. The presence of a solid phase shortened the homogenization time, especially for lower uSGR and deflector clearance, and reduced the mass transfer coefficient by 15–35%. Compared to the gas–liquid system, the noticeable effect of deflector clearance was found for the kLa coefficient, which was found approx. 20–29% higher for the lowest tested deflector clearance.


Sign in / Sign up

Export Citation Format

Share Document