Under bump metallurgy study on copper/low-k dielectrics for fine pitch flip chip packaging

2004 ◽  
Vol 33 (10) ◽  
pp. 1144-1155 ◽  
Author(s):  
Seung Wook Yoon ◽  
Vaidyanathan Kripesh ◽  
Su Young Ji Jeffery ◽  
Mahadevan K. Iyer
Author(s):  
Seung Wook Yoon ◽  
V. Kripesh ◽  
Wong Wai Kwan ◽  
Li Chao Yong ◽  
Chen Man Tong ◽  
...  

2011 ◽  
Vol 2011 (1) ◽  
pp. 000828-000836
Author(s):  
Yasumitsu Orii ◽  
Kazushige Toriyama ◽  
Sayuri Kohara ◽  
Hirokazu Noma ◽  
Keishi Okamoto ◽  
...  

The electromigration behavior of 80μm bump pitch C2 (Chip Connection) interconnection is studied and discussed. C2 is a peripheral ultra fine pitch flip chip interconnection technique with solder capped Cu pillar bumps formed on Al pads that are commonly used in wirebonding technique. It allows us an easy control of the space between dies and substrates simply by varying the Cu pillar height. Since the control of the collapse of the solder bumps is not necessary, the technology is called the “C2 (Chip Connection)”. C2 bumps are connected to OSP surface treated Cu substrate pads on an organic substrate by reflow with no-clean process, hence the C2 is a low cost ultra fine pitch flip chip interconnection technology. The reliability tests on the C2 interconnection including thermal cycle tests and thermal humidity bias tests have been performed previously. However the reliability against electromigration for such small flip chip interconnections is yet more to investigate. The electromigration tests were performed on 80μm bump pitch C2 flip chip interconnections. The interconnections with two different solder materials were tested: Sn-2.5Ag and Sn100%. The effect of Ni layers electroplated onto the Cu pillar bumps on electromigration phenomena is also studied. From the cross-sectional analyses of the C2 joints after the tests, it was found that the presence of intermetallic compound (IMC) layers reduces the atomic migration of Cu atoms into Sn solder. The analyses also showed that the Ni layers are effective in reducing the migration of Cu atoms into solder. In the C2 joints, the under bump metals (UBMs) are formed by sputtered Ti/Cu layers. The electro-plated Cu pillar height is 45μm and the solder height is 25μm for 80μm bump pitch. The die size is 7.3-mm-square and the organic substrate is 20-mm-square with a 4 layer-laminated prepreg with thickness of 310μm. The electromigration test conditions ranged from 7 to 10 kA/cm2 with temperature ranging from 125 to 170°C. Intermetallic compounds (IMCs) were formed prior to the test by aging process of 2,000hours at 150°C. We have studied the effect of IMC layers on electromigration induced phenomena in C2 flip chip interconnections on organic substrates. The study showed that the IMC layers in the C2 joints formed by aging process can act as barrier layers to prevent Cu atoms from diffusing into Sn solder. Our results showed potential for achieving electromigration resistant joints by IMC layer formation. The FEM simulation results show that the current densities in the Cu pillar and the solder decrease with increasing Cu pillar height. However an increase in Cu pillar height also leads to an increase in low-k stress. It is important to design the Cu pillar structure considering both the electromigration performance and the low-k stress reduction.


2012 ◽  
Vol 1428 ◽  
Author(s):  
Osamu Suzuki ◽  
Toshiyuki Sato ◽  
Paul Czubarow ◽  
David Son

AbstractCapillary type underfill is still the mainstream underfill for mass production flip chip applications. Flip chip packages are migrating to ultra low-k, Pb-free, 3D and fine pitch packages. Underfill selection is becoming more critical. This paper discusses the performance and potential of underfills using a novel organic-inorganic hybrid polymer technology.Compared to eutectic and high lead solder, tin-silver-copper solder has lower C.T.E., higher elasticity and greater brittleness. In light of these properties, it is generally better to select high Tg and lower CTE underfill in order to prevent bump fatigue during reliability testing. Given the brittleness of low-k dielectric layers of flip chips, the destruction of low-k layers by stress inside the flip chip packages has become a major issue. Underfills for low-k packages should have low stress, and the warpage should be small. It is expected that as the low-k trend expands, the underfill is required to provide less stress. Low Tg underfill shows lower warpage. New chemical technologies have been developed to address the needs of underfills for low-k/Pb-free flip chip packages, specifically organic-inorganic hybrid polymer compounds. The organic-inorganic hybrid polymer provides excellent cure properties which enable a balanced combination of low stress and good bump protection. The material properties of the underfill were characterized using Differential Scanning Calorimetry (DSC), Thermo-Mechanical Analysis (TMA), and Dynamic Mechanical Analysis (DMA). A daisy-chained test vehicle was used for reliability testing. A detailed study is presented on the underfill properties, reliability data, as well as finite element modeling results.


2003 ◽  
Vol 3 (4) ◽  
pp. 111-118 ◽  
Author(s):  
L.L. Mercado ◽  
C. Goldberg ◽  
Shun-Meen Kuo ◽  
Tien-Yu Lee ◽  
S.K. Pozder
Keyword(s):  

2010 ◽  
Vol 2010 (1) ◽  
pp. 000197-000203 ◽  
Author(s):  
Eric Ouyang ◽  
MyoungSu Chae ◽  
Seng Guan Chow ◽  
Roger Emigh ◽  
Mukul Joshi ◽  
...  

In this paper, a novel flip chip interconnect structure called Bond-On-Lead (BOL) and its ability to reduce stress in the sensitive sub-surface ELK (Extra Low K) layers of the die is presented. BOL is a new low cost flip chip packaging solution which was developed by STATSChipPAC to dramatically reduce the cost of flip chip packaging. The BOL solution allows for efficient substrate routing by virtue of the use of narrow BOL pads and the removal of solder mask in the area of the BOL pads, which eliminates the limitations associated with solder mask opening sizes and positional tolerances. In addition to the compelling cost benefits, modeling results are confirmed with empirical reliability testing data to show that BOL is superior to the traditional Bond-on-Capture Pad (BOC) configuration from a mechanical stress and reliability perspective. The focus of this paper is on the theoretical analysis of the stress, strain, and warpage associated with the BOL configuration compared with the traditional BOC structure. For the package deformation, the global finite element method is used to simulate the package warpage. For the local bumping reliability, the focus is on the ELK layers which are the critical locations affecting the package's reliability. The local finite element simulation is conducted to compare the critical ELK layers stresses with BOL structure vs. with traditional BOC structure.


Sign in / Sign up

Export Citation Format

Share Document